CHAPTER 0
A Prehistor y o f Tigh t Closur e
The root s o f tigh t closur e ca n b e foun d i n th e wor k o f severa l authors , mos t
notably Christia n Peskin e an d Lucie n Szpiro , Melvi n Hochster , an d Pau l Roberts .
This work, in the late sixties and the seventies, used the idea of reduction to charac-
teristic p an d too k advantag e o f the Frobeniu s morphis m i n positive characteristic .
One of the mos t importan t fact s i n this proces s i s that th e Frobeniu s morphis m i s
flat ove r regular rings (although perhaps the single most importan t poin t i s that th e
Frobenius i s a n endomorphism) . Thi s fac t an d it s convers e wer e prove d b y Kun z
[Ku2] i n 1969. Th e sam e year, Peskin e an d Szpir o [PS3 ] proved tha t applyin g th e
Frobenius t o a finit e acycli c sequenc e o f finitely generate d fre e module s preserve s
exactness. The y went o n to use this to prove several of the homological conjecture s
in characteristic p and for rings essentially of finite type over a field of characteristi c
0 [PS1]. Thei r pape r wa s the first us e of the metho d o f reduction t o characteristi c
p in commutativ e algebra,
1
althoug h th e metho d ha d bee n use d fo r man y year s i n
other areas.
2
I n 1973, Hochster [Ho2 ] gav e a proof o f the existenc e o f Big Cohen -
Macaulay modules, i.e. no t necessaril y finitely generate d module s such that a given
system o f parameters i s a regular sequenc e on the module . Th e proo f use d what h e
called 'amiable ' system s o f parameters. Her e i s the definitio n o f amiable :
DEFINITION
1. A syste m o f parameter s xi,...,Xd o f a Noetheria n loca l rin g
(R,m) o f dimensio n d i s sai d t o b e amiable i f ther e i s a n elemen t c G R, no t
nilpotent, suc h that , fo r al l k, 0 k d, an d fo r al l positive integer s t ,
c((x1, ...,xk)R : x
kJtl
) C (a^ , ...,x
k
)R.
Hochster prove d tha t i f (R,m) i s a n integrall y close d Cohen-Macaula y loca l
domain, an d S i s a module-finit e loca l extensio n domai n whos e fractio n field i s
separable ove r th e fractio n field o f R, the n an y syste m o f parameter s o f R i s a n
amiable syste m o f parameter s i n S. Toda y w e kno w tha t an y syste m o f param -
eters o f a loca l equidimensiona l rin g whic h ha s a dualizin g comple x i s amiable .
The elemen t c i n th e definitio n o f amiabilit y play s th e rol e o f a tes t elemen t i n
tight closur e theory . Suc h c ar e unifor m annihilators—i n thi s cas e suc h c uni -
formly annihilat e th e failur e o f th e rin g t o b e Cohen-Macaula y i n th e followin g
sense. I f R wer e Cohen-Macaulay , the n fo r ever y syste m o f parameter s xi,...,Xd,
xAt th e sam e time , Robi n Hartshorn e wa s on e o f th e pioneer s i n applyin g th e Frobeniu s
to th e stud y o f loca l cohomology , an d hi s in-dept h stud y wit h Rober t Speise r o n th e actio n o f
Frobenius o n loca l cohomolog y appeare d i n th e Annal s i n 1977.
2
Where reductio n t o characteristi c p wa s first use d i s a myster y t o me , bu t on e gues s comin g
from Hochste r i s in a proo f o f the irreducibilit y o f cyclotomic polynomials . Th e proo f o f Dedekin d
in 1857 use d reductio n t o characteristi c p. However , i t ma y b e tha t eve n Gaus s wa s th e first t o
use thi s technique .
5
http://dx.doi.org/10.1090/cbms/088/02
Previous Page Next Page