14 C. TAUBE S 3. Th e solution s hav e a n algebrai c constructio n fo r a certain favore d set o f manifolds . (2.9) I will elaborate o n these three point s below . However , a digressio n i s needed t o initiat e th e discussion . e) Th e modul i spac e If there is one covariant derivativ e on V wit h anti-sel f dua l curvature , then ther e ar e many . Indeed , give n suc h a covarian t derivative , V , here i s ho w t o construc t som e more : Le t s : V — V b e a vecto r bundle automorphism . (Thus , s i s a n everywher e invertibl e sectio n o f the vecto r bundl e End(V). ) Le t V = s • V • s"1. Th e curvatur e o f V i s Rv' = s - R v • s - 1 , an d i s therefore anti-sel f dua l too . Thus, i t follow s tha t i t make s n o sens e t o "count " V' s wit h anti - self dua l curvatures . A t best , on e migh t hop e t o coun t th e equivalenc e classes of such V here, V and V ar e said t o be in the same equivalence class whe n (2.10) V ~ s - V - 5 " 1 for som e unitar y automorphis m s o f V wit h determinan t 1 . (Tha t is , the automorphis m s i s require d t o pul l th e hermitia n metri c bac k a s itself.) Th e equivalenc e class of V will be denoted b y [V] , and th e set of equivalence classes of covariant derivative s with anti-sel f dua l curvatur e will be denoted b y M = M(V). For technical reasons, it is convenient t o introduce a some what large r set, M°. Th e definitio n o f M. 0 require s th e choic e o f a fiducia l bas e point p G X. Now , defin e M° a s th e se t o f equivalenc e classe s o f V a s in (2.10) , but wit h th e constrain t tha t s(p) = identity . Then , th e grou p SU(2) (o f 2 x 2 unitary matrice s wit h determinan t 1 ) acts o n M° wit h quotient M. (Thi s i s becaus e th e grou p Q° of unitary , determinan t 1 automorphisms, s , o f V wit h s(p) = I define s a normal subgrou p o f th e group Q of al l unitary , determinan t 1 automorphisms o f V. ) The se t M° i s a bit nice r tha n M becaus e o f the followin g structur e theorem: Theorem 2.1 . (Uhlenbec k [24]): There is a Baire (second category) set of smooth metrics on X for which the corresponding M° has a natural structure of a smooth, finite dimensional manifold with a smooth action ofSU(2). Furthermore, ifbt(X) 0, then the action of SU{2) on M° is everywhere free modulo the center of 377(2) (which is ±1) as long as C2(V) is positive.
Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 1996 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.