Contents

Preface xv
Acknowledgments xxiii

Chapter 1. Introduction
1.1. Shock formation in one spatial dimension 1
1.2. New aspects in more than one spatial dimension 11

Chapter 2. Overview of the Two Main Theorems
2.1. First description of the two theorems 33
2.2. The basic structure of the equations 35
2.3. The structure of the equation relative to rectangular coordinates 38
2.4. The (classic) null condition 38
2.5. Basic geometric constructions 41
2.6. The rescaled frame and dispersive sup-norm estimates 44
2.7. The basic structure of the coupled system and sup-norm estimates for the eikonal function quantities 46
2.8. Lower bounds for the rescaled radial derivative of the solution in the case of shock formation 47
2.9. The main ideas behind the vanishing of the inverse foliation density 48
2.10. The role of Theorem 22.1 in justifying the heuristics 49
2.11. Comparison with related work 61
2.12. Outline of the monograph 76
2.13. Suggestions on how to read the monograph 78

Chapter 3. Initial Data, Basic Geometric Constructions, and the Future Null Condition Failure Factor
3.1. Initial data 81
3.2. The eikonal function and the geometric radial variable 82
3.3. First fundamental forms and Levi-Civita connections 83
3.4. Frame vectorfields and the inverse foliation density 84
3.5. Geometric coordinates 87
3.6. Frames 89
3.7. The future null condition failure factor 90
3.8. Contraction and component notation 90
3.9. Projection operators and tensors along submanifolds 91
3.10. Expressions for the metrics and volume form factors 93
3.11. The trace and trace-free parts of tensors 95
3.12. Angular differential 96
3.13. Musical notation 97
3.14. Pointwise norms
3.15. Lie derivatives and projected Lie derivatives
3.16. Second fundamental forms
3.17. Frame components, relative to the nonrescaled frame, of the derivatives of the metric with respect to the solution
3.18. The change of variables map
3.19. Area forms, volume forms, and norms
3.20. Schematic notation

Chapter 4. Transport Equations for the Eikonal Function Quantities
4.1. Re-centered variables and the eikonal function quantities
4.2. Covariant derivatives and Christoffel symbols relative to the rectangular coordinates
4.3. Transport equation for the inverse foliation density
4.4. Transport equations for the rectangular components of the frame vectorfields
4.5. An expression for the re-centered null second fundamental form in terms of other quantities
4.6. Identities involving deformation tensors and Lie derivatives

Chapter 5. Connection Coefficients of the Rescaled Frames and Geometric Decompositions of the Wave Operator
5.1. Connection coefficients of the rescaled frame
5.2. Connection coefficients of the rescaled null frame
5.3. Frame decomposition of the inverse-foliation-density-weighted wave operator

Chapter 6. Construction of the Rotation Vectorfields and Their Basic Properties
6.1. Construction of the rotation vectorfields
6.2. Basic properties of the rotation vectorfields

Chapter 7. Definition of the Commutation Vectorfields and Deformation Tensor Calculations
7.1. The commutation vectorfields
7.2. Deformation tensor calculations

Chapter 8. Geometric Operator Commutator Formulas and Schematic Notation for Repeated Differentiation
8.1. Definitions of various differential operators
8.2. Operator commutator identities
8.3. Notation for repeated differentiation

Chapter 9. The Structure of the Wave Equation Inhomogeneous Terms After One Commutation
9.1. Preliminary calculations
9.2. Frame decomposition of the commutation current

Chapter 10. Energy and Cone Flux Definitions and the Fundamental Divergence Identities
10.1. Preliminary calculations
10.2. The energy-cone flux integral identities 156
10.3. Integration by parts identities for the top-order square integral estimates 160
10.4. Error integrands arising from the deformation tensors of the multiplier vectorfields 164

Chapter 11. Avoiding Derivative Loss and Other Difficulties via Modified Quantities 167
11.1. Preliminary structural identities 168
11.2. Full modification of the trace of the re-centered null second fundamental form 173
11.3. Partial modification of the trace of the re-centered null second fundamental form 177
11.4. Partial modification of the angular gradient of the inverse foliation density 178

Chapter 12. Small Data, Sup-Norm Bootstrap Assumptions, and First Pointwise Estimates 181
12.1. Restricting the analysis to solutions of the evolution equations 181
12.2. Small data 182
12.3. Fundamental positivity bootstrap assumption for the inverse foliation density 182
12.4. Sup-norm bootstrap assumptions 182
12.5. Basic estimates for the geometric radial variable 184
12.6. Basic estimates for the rectangular spatial coordinate functions 184
12.7. Estimates for the rectangular components of the metrics and the spherical projection tensorfield 185
12.8. The behavior of quantities along the initial data hypersurface 187
12.9. Estimates for the derivatives of rectangular components of various vectorfields and the radial component of the Euclidean rotations 190
12.10. Estimates for the rectangular components of the metric dual of the unit-length radial vectorfield 192
12.11. Precise pointwise estimates for the rotation vectorfields 193
12.12. Precise pointwise differential operator comparison estimates 197
12.13. Useful estimates for avoiding detailed commutators 199
12.14. Estimates for the derivatives of the angular differential of the rectangular spatial coordinate functions 200
12.15. Pointwise estimates for the Lie derivatives of the frame components of the derivative of the rectangular components of the metric with respect to the solution 200
12.16. Crude pointwise estimates for the Lie derivatives of the angular components of the deformation tensors 201
12.17. Two additional crude differential operator comparison estimates 203
12.18. Pointwise estimates for the derivatives of the re-centered null second fundamental form in terms of other quantities 204
12.19. Pointwise estimates for the Lie derivatives of the rotation vectorfields 206
12.20. Pointwise estimates for the angular one-forms and vectorfields corresponding to the commutation vectorfield deformation tensors 207
CONTENTS

12.21. Preliminary Lie derivative commutator estimates 209
12.22. Commutator estimates for vectorfields acting on functions and spherical covariant tensorfields 210
12.23. Commutator estimates for vectorfields acting on the covariant angular derivative of a spherical tensorfield 215
12.24. Commutator estimates for vectorfields acting on the angular Hessian of a function 215
12.25. Commutator estimates involving the trace and trace-free parts 218
12.26. Pointwise estimates, in terms of other quantities, for the Lie derivatives of the re-centered null second fundamental form involving an outgoing null differentiation 223
12.27. Improvement of the auxiliary bootstrap assumptions 225
12.28. Sharp pointwise estimates for a frame component of the derivative of the metric with respect to the solution 230
12.29. Pointwise estimates for the angular Laplacian of the derivatives of the rectangular components of the re-centered version of the outgoing null vectorfield 231
12.30. Estimates related to integrals over the spheres 233
12.31. Faster than expected decay for certain wave-variable-related quantities 236
12.32. Pointwise estimates for the vectorfield Xi 239
12.33. Estimates for the components of the commutation vectorfields relative to the geometric coordinates 241
12.34. Estimates for the rectangular spatial derivatives of the eikonal function 243

Chapter 13. Sharp Estimates for the Inverse Foliation Density 245
13.1. Basic ingredients in the analysis 245
13.2. Sharp pointwise estimates for the inverse foliation density 249
13.3. Fundamental estimates for time integrals involving the foliation density 266

Chapter 14. Square Integral Coerciveness and the Fundamental Square-Integral-Controlling Quantities 277
14.1. Coerciveness of the energies and cone fluxes 277
14.2. Definitions of the fundamental square-integral-controlling quantities 279
14.3. Coerciveness of the fundamental square-integral-controlling quantities 280

Chapter 15. Top-Order Pointwise Commutator Estimates Involving the Eikonal Function 283
15.1. Top-order pointwise commutator estimates connecting the angular Hessian of the inverse foliation density to the radial Lie derivative of the re-centered null second fundamental form 283
15.2. Top-order pointwise commutator estimates corresponding to the spherical Codazzi equations 290
Chapter 16. Pointwise Estimates for the Easy Error Integrands and Identification of the Difficult Error Integrands Corresponding to the Commuted Wave Equation

16.1. Preliminary analysis and the definition of harmless terms
16.2. The important terms in the top-order derivatives of the deformation tensors of the commutation vectorfields
16.3. Crude pointwise estimates for the below-top-order derivatives of the deformation tensors of the commutation vectorfields
16.4. Pointwise estimates for the top-order derivatives of the outgoing null derivative of the commutation vectorfield deformation tensors
16.5. Proof of Proposition 16.4
16.6. Proof of Corollary 16.5
16.7. Pointwise estimates for the error integrands involving the deformation tensors of the multiplier vectorfields
16.8. Pointwise estimates needed to close the elliptic estimates

Chapter 17. Pointwise Estimates for the Difficult Error Integrands Corresponding to the Commuted Wave Equation

17.1. Preliminary pointwise estimates for the derivatives of the inhomogeneous terms in the transport equations for the fully modified quantities
17.2. Preliminary pointwise estimates for the derivatives of the inhomogeneous terms in the transport equations for the partially modified quantities
17.3. Solving the transport equation satisfied by the fully modified version of the spatial derivatives of the trace of the re-centered null second fundamental form
17.4. Pointwise estimates for the difficult error integrands requiring full modification
17.5. Pointwise estimates for the difficult error integrands requiring partial modification

Chapter 18. Elliptic Estimates and Sobolev Embedding on the Spheres

18.1. Elliptic estimates
18.2. Sobolev embedding

Chapter 19. Square Integral Estimates for the Eikonal Function Quantities that Do Not Rely on Modified Quantities

19.1. Square integral estimates for the eikonal function quantities that do not rely on modified quantities

Chapter 20. A Priori Estimates for the Fundamental Square-Integral-Controlling Quantities

20.1. Bootstrap assumptions for the fundamental square-integral-controlling quantities
20.2. Statement of the two main propositions and the fundamental Gronwall lemma
20.3. Estimates for all but the most difficult error integrals
20.4. Difficult top-order error integral estimates
20.5. Proof of Lemma 20.20 407
20.6. Proof of Lemma 20.25 410
20.7. Proof of Lemma 20.26 421
20.8. Proof of Proposition 20.8 426
20.9. Proof of Proposition 20.9 429
20.10. Proof of Lemma 20.10 431

Chapter 21. Local Well-Posedness and Continuation Criteria 447
21.1. Local well-posedness and continuation criteria 447

Chapter 22. The Sharp Classical Lifespan Theorem 453
22.1. The sharp classical lifespan theorem 453
22.2. More precise control over angular derivatives 463

Chapter 23. Proof of Shock Formation for Nearly Spherically Symmetric Data 467
23.1. Preliminary pointwise estimates based on approximate transport equations 468
23.2. Existence of small, stable, shock-generating data 470
23.3. Proof of shock formation for small, nearly spherically symmetric data 477

Appendix A. Extension of the Results to a Class of Non-Covariant Wave Equations 479
A.1. From the scalar quasilinear wave equation to the equivalent system of covariant wave equations 479
A.2. The main new estimate needed at the top order 484

Appendix B. Summary of Notation and Conventions 489
B.1. Coordinates 489
B.2. Indices 490
B.3. Constants 490
B.4. Spacetime subsets 490
B.5. Metrics, musical notation, and inner products 491
B.6. Eikonal function quantities 492
B.7. Additional tensorfields related to the connection coefficients 492
B.8. Frame vectorfields and the timelike unit normal to the constant-time hypersurfaces 493
B.9. Contraction and component notation 494
B.10. Projection operators and frame components 494
B.11. Tensor products, traces, and contractions 495
B.12. The size of the data and the bootstrap parameter 495
B.13. Commutation vectorfields 495
B.14. Differential operators and commutator notation 496
B.15. Floor and ceiling functions and repeated differentiation 497
B.16. Area and volume forms 498
B.17. Norms 498
B.18. Energy-momentum tensorfield, multiplier vectorfields, and compatible currents 499
B.19. Square-integral-controlling quantities 499
CONTENTS

B.20. Modified quantities 500
B.21. Curvature tensors 500
B.22. Omission of the independent variables in some expressions 501
B.23. Data and functions relevant for the proof of shock formation 501

Bibliography 503

Index 507