Contents

Preface of the Republication .. xi
Introduction to the Subject of the Icosahedral Book xv

Lectures on the Icosahedron and the Solution of
Equations of the Fifth Degree

Title page, Preface and Contents .. I-XII
Original Text .. 1-215
Table ... 216
Appendix ... 217

Comments on the Text .. 223
Further Developments ... 257
Literature ... 267
Appendix: The Icosahedron and the Equations of the Fifth Degree 279
Contents

Part I Theory of the Icosahedron Itself

Chapter I The Regular Solids and the Theory of Groups .. 3

- §1. Statement of the Question .. 3
- §3. The Cyclic Rotation Groups ... 7
- §4. The Group of the Dihedral Rotations ... 8
- §5. The Quadratic Group ... 10
- §6. The Group of the Tetrahedral Rotations .. 11
- §7. The Group of the Octahedral Rotations ... 12
- §8. The Group of the Icosahedral Rotations .. 13
- §9. On the Planes of Symmetry in Our Configurations ... 15
- §10. General Groups of Points—Fundamental Domains ... 16
- §11. The Extended Groups ... 17
- §12. Generation of the Icosahedral Group .. 18
- §13. Generation of the Other Groups of Rotations .. 20

Chapter II Introduction of \((x + iy)\) ... 23

- §1. First Presentation and Survey of the Developments of This Chapter .. 23
- §2. On Those Linear Transformations of \((x + iy)\) Which Correspond to Rotations Round the Centre ... 25
- §3. Homogeneous Linear Substitutions—Their Composition .. 27
- §4. Return to the Groups of Substitutions—the Cyclic and Dihedral Groups 29
- §5. The Groups of the Tetrahedron and Octahedron ... 30
- §6. The Icosahedral Group ... 32
- §7. Non-Homogeneous Substitutions—Consideration of the Extended Groups 34
- §8. Simple Isomorphism in the Case of Homogeneous Groups of Substitutions 36
- §9. Invariant Forms Belonging to a Group—The Set of Forms for the Cyclic and Dihedral Groups ... 37
- §10. Preparation for the Tetrahedral and Octahedral Forms ... 40
- §11. The Set of Forms for the Tetrahedron ... 41
VIII Contents

§12. The Set of Forms for the Octahedron ... 43
§13. The Set of Forms for the Icosahedron ... 45
§14. The Fundamental Rational Functions ... 47
§15. Remarks on the Extended Groups ... 49

Chapter III Statement and Discussion of the Fundamental Problem, According to the Theory of Functions 51
§1. Definition of the Fundamental Problem .. 51
§2. Reduction of the Form-Problem ... 53
§3. Plan of the Following Investigations .. 55
§4. On the Conformable Representation by Means of the Function $z(Z)$.. 56
§5. March of the z_1, z_2 Function in General—Development in Series 58
§6. Transition to the Differential Equations of the Third Order 60
§7. Connection with Linear Differential Equations of the Second Order 61
§9. Linear Differential Equations of the Second Order for z_1 and z_2 64
§10. Relations to Riemann’s P-Function .. 66

Chapter IV On the Algebraical Character of Our Fundamental Problem .. 69
§1. Problem of the Present Chapter .. 69
§2. On the Group of an Algebraical Equation .. 70
§3. General Remarks on Resolvents .. 71
§4. The Galois Resolvent in Particular .. 73
§5. Marshalling of our Fundamental Equations ... 76
§6. Consideration of the Form-Problems .. 78
§7. The Solution of the Equations of the Dihedron, Tetrahedron, and Octahedron ... 78
§8. The Resolvents of the Fifth Degree for the Icosahedral Equation 80
§9. The Resolvent of the r’s ... 82
§10. Computation of the Forms t and W .. 84
§11. The Resolvent of the u’s ... 86
§12. The Canonical Resolvent of the Y’s ... 86
§13. Connection of the New Resolvent with the Resolvent of the r’s 87
§14. On the Products of Differences for the u’s and the Y’s 88
§15. The Simplest Resolvent of the Sixth Degree 90
§16. Concluding Remarks ... 92

Chapter V General Theorems and Survey of the Subject 95
§1. Estimation of our Process of Thought so far, and Generalisations Thereof ... 95
Contents

§2. Determination of all Finite Groups of Linear Substitutions of a Variable ... 97
§3. Algebraically Integrable Linear Homogeneous Differential Equations of the Second Order .. 101
§4. Finite Groups of Linear Substitutions for a Greater Number of Variables ... 103
§5. Preliminary Glance at the Theory of Equations of the Fifth Degree, and Formulation of a General Algebraical Problem 104
§6. Infinite Groups of Linear Substitutions of a Variable 105
§7. Solution of the Tetrahedral, Octahedral, and Icosahedral Equations by Elliptic Modular Functions .. 109
§8. Formulae for the Direct Solution of the Simplest Resolvent of the Sixth Degree for the Icosahedron 111
§9. Significance of the Transcendental Solutions 112

Part II Theory of Equations of the Fifth Degree

Chapter I The Historical Development of the Theory of Equations of the Fifth Degree ... 117
§1. Definition of Our First Problem ... 117
§2. Elementary Remarks on the Tschirnhausian Transformation—Bring's Form ... 119
§3. Data Concerning Elliptic Functions .. 121
§4. On Hermite's Work of 1858 .. 124
§5. The Jacobian Equations of the Sixth Degree 125
§6. Kronecker's Method for the Solution of Equations of the Fifth Degree .. 128
§7. On Kronecker's Work of 1861 ... 130
§8. Object of our Further Developments 132

Chapter II Introduction of Geometrical Material 135
§1. Foundation of the Geometrical Interpretation 135
§2. Classification of the Curves and Surfaces 136
§3. The Simplest Special Cases of Equations of the Fifth Degree 137
§4. Equations of the Fifth Degree Which Appertain to the Icosahedron ... 139
§5. Geometrical Conception of the Tschirnhausian Transformation 141
§6. Special Applications of the Tschirnhausian Transformation 142
§7. Geometrical Aspect of the Formation of Resolvents 143
§8. On Line Co-ordinates in Space ... 145
§9. A Resolvent of the Twentieth Degree of Equations of the Fifth Degree .. 147
§10. Theory of the Surface of the Second Degree 148
Chapter III The Canonical Equations of the Fifth Degree 151
§1. Notation—The Fundamental Lemma .. 151
§2. Determination of the Appropriate Parameter λ 153
§3. Determination of the Parameter µ .. 156
§4. The Canonical Resolvent of the Icosahedral Equation 156
§5. Solution of the Canonical Equations of the Fifth Degree 158
§6. Gordan’s Process ... 161
§7. Substitutions of the λ,µ’s—Invariant Forms 163
§8. General Remarks on the Calculations Which We Have to Perform 165
§9. Fresh Calculation of the Magnitude m_1 ... 166
§10. Geometrical Interpretation of Gordan’s Theory 167
§11. Algebraical Aspects (After Gordan) ... 169
§12. The Normal Equation of The r_ν’s ... 171
§13. Bring’s Transformation ... 172
§14. The Normal Equation of Hermite ... 173

Chapter IV The Problem of the A’s and the Jacobian Equations of the Sixth Degree 175
§1. The Object of the Following Developments ... 175
§2. The Substitutions of the A’s—Invariant Forms 177
§3. Geometrical Interpretation—Regulation of the Invariant Expressions .. 179
§4. The Problem of the A’s and Its Reduction .. 182
§5. On the Simplest Resolvents of the Problem of the A’s 183
§6. The General Jacobian Equation of the Sixth Degree 185
§7. Brioschi’s Resolvent .. 186
§8. Preliminary Remarks on the Rational Transformation of Our Problem 188
§9. Accomplishment of the Rational Transformation 190
§10. Group-Theory Significance of Cogredience and Contragredience 192
§11. Introductory to the Solution of Our Problem .. 194
§12. Corresponding Formulae ... 196

Chapter V The General Equation of the Fifth Degree 199
§1. Formulation of Two Methods of Solution ... 199
§2. Accomplishment of Our First Method ... 200
§3. Criticism of the Methods of Bring and Hermite 203
§4. Preparation for Our Second Method of Solution 203
§5. Of the Substitutions of the A,A’s—Definite Formulation 205
§6. The Formulae of Inversion of Our Second Method 206
§7. Relations to Kronecker and Brioschi .. 208
§8. Comparison of Our Two Methods .. 210
§9. On the Necessity of the Accessory Square Root 211
§10. Special Equations of the Fifth Degree Which Can Be Rationally Reduced to an Icosahedral Equation ... 213
§11. Kronecker's Theorem .. 214

Appendix ... 217