Contents

Preface ix

Part I. Vector spaces

Chapter 1. The basics 3

1.1. The vector space \mathbb{F}^n 3

1.2. Linear combinations 7

1.3. Matrices and the equation $Ax = b$ 11

1.4. The basic counting theorem 16

1.5. Matrices and linear transformations 21

1.6. Exercises 25

Chapter 2. Systems of linear equations 29

2.1. The geometry of linear systems 29

2.2. Solving systems of equations—setting up 36

2.3. Solving linear systems—echelon forms 40

2.4. Solving systems of equations—the reduction process 44

2.5. Drawing some consequences 50

2.6. Exercises 54

Chapter 3. Vector spaces 57

3.1. The notion of a vector space 57

3.2. Linear combinations 62

3.3. Bases and dimension 70

3.4. Subspaces 79

3.5. Affine subspaces and quotient vector spaces 91

3.6. Exercises 95
Chapter 4. Linear transformations

4.1. Linear transformations I 103
4.2. Matrix algebra 107
4.3. Linear transformations II 112
4.4. Matrix inversion 122
4.5. Looking back at calculus 128
4.6. Exercises 132

Chapter 5. More on vector spaces and linear transformations

5.1. Subspaces and linear transformations 139
5.2. Dimension counting and applications 142
5.3. Bases and coordinates: vectors 148
5.4. Bases and matrices: linear transformations 158
5.5. The dual of a vector space 167
5.6. The dual of a linear transformation 171
5.7. Exercises 177

Chapter 6. The determinant

6.1. Volume functions 195
6.2. Existence, uniqueness, and properties of the determinant 202
6.3. A formula for the determinant 206
6.4. Practical evaluation of determinants 211
6.5. The classical adjoint and Cramer’s rule 213
6.6. Jacobians 214
6.7. Exercises 216

Chapter 7. The structure of a linear transformation

7.1. Eigenvalues, eigenvectors, and generalized eigenvectors 222
7.2. Polynomials in \mathcal{T} 226
7.3. Application to differential equations 234
7.4. Diagonalizable linear transformations 239
7.5. Structural results 246
7.6. Exercises 253

Chapter 8. Jordan canonical form

8.1. Chains, Jordan blocks, and the (labelled) eigenstructure picture of \mathcal{T} 260
8.2. Proof that \mathcal{T} has a Jordan canonical form 263
8.3. An algorithm for Jordan canonical form and a Jordan basis 268
8.4. Application to systems of first-order differential equations 275
8.5. Further results 280
8.6. Exercises 283