Contents

Acknowledgments ... vii

0 Introduction ... 1
 0.1 About this book ... 1
 0.2 Continuous and discrete time ... 3
 0.3 Historical sketch ... 6

I Flows ... 15

1 Topological dynamics ... 19
 1.1 Basic properties ... 19
 1.2 Time change, flow under a function, and sections 34
 1.3 Conjugacy and orbit equivalence 39
 1.4 Attractors and repellers ... 48
 1.5 Recurrence properties and chain decomposition 60
 1.6 Transitivity, minimality, and topological mixing 78
 1.7 Expansive flows .. 88
 1.8 Weakening expansivity .. 94
 1.9 Symbolic flows, coding .. 98

2 Hyperbolic geodesic flow* .. 113
 2.1 Isometries, geodesics, and horocycles of the hyperbolic plane and disk 113
 2.2 Dynamics of the natural flows 120
 2.3 Compact factors .. 129
 2.4 The geodesic flow on compact hyperbolic surfaces 131
 2.5 Symmetric spaces ... 136
 2.6 Hamiltonian systems .. 141

3 Ergodic theory ... 155
 3.1 Flow-invariant measures and measure-preserving transformations . 155

* = optional

xi
CONTENTS

3.2 Ergodic theorems ... 163
3.3 Ergodicity .. 171
3.4 Mixing ... 179
3.5 Invariant measures under time change 194
3.6 Flows under a function 196
3.7 Spectral theory* ... 203

4 Entropy, pressure, and equilibrium states 211
4.1 Measure-theoretic entropy 211
4.2 Topological entropy .. 216
4.3 Topological pressure and equilibrium states 232
4.4 Equilibrium states for time-t maps* 243

II Hyperbolic flows ... 247
Introduction to Part II .. 249

5 Hyperbolicity ... 251
5.1 Hyperbolic sets and basic properties 252
5.2 Physical flows: Geodesic flows, magnetic flows, billiards, gases, and linkages ... 263
5.3 Shadowing, expansivity, closing, specification, and Axiom A 293
5.4 The Anosov Shadowing Theorem, structural and Ω-stability 309
5.5 Local linearization: The Hartman–Grobman Theorem 322
5.6 The Mather–Moser method* 324

6 Invariant foliations ... 331
6.1 Stable and unstable foliations 332
6.2 Global foliations, local maximality, Bowen bracket 336
6.3 Livshitz theory .. 348
6.4 Hölder continuity of orbit equivalence 352
6.5 Horseshoes and attractors 355
6.6 Markov partitions .. 363
6.7 Failure of local maximality* 371
6.8 Smooth linearization and normal forms* 374
6.9 Differentiability in the Hartman–Grobman Theorem* 390

7 Ergodic theory of hyperbolic sets 399
7.1 The Hopf argument, absolute continuity, mixing 400
7.2 Stable ergodicity* .. 410
7.3 Specification, uniqueness of equilibrium states 420
7.4 Sinai–Ruelle–Bowen measures 435
7.5 Hamenstädt–Margulis measure* 446
7.6 Asymptotic orbit growth* 453
7.7 Rates of mixing* .. 461

8 Anosov flows .. 471
8.1 Anosov diffeomorphisms, suspensions, and mixing 472
8.2 Foulon–Handel–Thurston surgery 476
8.3 Anomalous Anosov flows ... 486
8.4 Codimension-1 Anosov flows 493
8.5 \mathbb{R}-covered Anosov 3-flows 502
8.6 Horocycle and unstable flows* 509

9 Rigidity ... 531
9.1 Multidimensional time: Commuting flows 533
9.2 Conjugacies ... 543
9.3 Entropy and Lyapunov exponents 548
9.4 Optimal regularity of the invariant subbundles 553
9.5 Longitudinal regularity .. 562
9.6 Sharpness for transversely symplectic flows, threading ... 566
9.7 Smooth invariant foliations 572
9.8 Godbillon–Vey invariants* 582

Appendices ... 591
A Measure-theoretic entropy of maps 591
A.1 Lebesgue spaces .. 591
A.2 Entropy and conditional entropy 595
A.3 Properties of entropy ... 606

B Hyperbolic maps and invariant manifolds 625
B.1 The Contraction Mapping Principle 625
B.2 Generalized eigenspaces ... 628
B.3 The spectrum of a linear map 630
B.4 Hyperbolic linear maps ... 633
B.5 Admissible manifolds: The Hadamard method 638
B.6 The Inclination Lemma and homoclinic tangles 655
CONTENTS

B.7 Absolute continuity .. 659
Hints and answers to the exercises 671
Bibliography .. 679
Index of persons .. 703
Index .. 707
Index of theorems .. 721