Contents

Preface to the Second Edition xi

Preface to the First Edition xiii

1 Calculating on the Back of an Envelope 1

In this first chapter we learn how to think about questions that need only good enough answers. We find those answers with quick estimates that start with reasonable assumptions and information you have at your fingertips. To make the arithmetic easy we round numbers drastically and count zeroes when we have to multiply.

1.1 Hailing a ride 2
1.2 How many seconds? 4
1.3 Heartbeats 5
1.4 Calculators 6
1.5 Millions of trees? 7
1.6 Carbon footprints 8
1.7 Kilo, mega, giga 9
1.8 Exercises 10

2 Units and Unit Conversions 27

In real life there are few naked numbers. Numbers usually measure something like cost, population, time, speed, distance, weight, energy or power. Often what’s measured is a rate, like miles per hour, gallons per mile, miles per gallon, dollars per gallon, dollars per euro or centimeters per inch.

2.1 Rate times time equals distance 27
2.2 The MPG illusion 29
2.3 Converting currency 31
2.4 Unit pricing and crime rates 33
2.5 The metric system 34
2.6 Working on the railroad 36
2.7 Scientific notation, milli and micro 37
2.8 Carpeting and paint 39
2.9 Exercises 41
3 Percentages, Sales Tax and Discounts

The focus of this chapter is the study of relative change, often expressed as a percent. We augment an often much needed review in two ways — stressing quick paperless estimation for approximate answers and, for precision, a new technique: multiplying by $1 + \text{percent change}$.

3.1 The federal budget
3.2 Red Sox ticket prices
3.3 The 1+ trick
3.4 Exploiting the 1+ trick
3.5 Large and small percentages
3.6 Percentage points
3.7 Percentiles
3.8 Exercises

4 Inflation

We mine the internet for data about inflation and use the 1+ technique from Chapter 3 to understand that data.

4.1 Red Sox ticket prices
4.2 Inflation is a rate
4.3 The Consumer Price Index
4.4 More than 100 %
4.5 How much is your raise worth?
4.6 The minimum wage
4.7 Inflation history
4.8 Exercises

5 Average Values

We start by remembering that to compute an average you add the values and divide by the count. We quickly move on to weighted averages, which are more common and more useful. They’re a little harder to understand, but worth the effort. They help explain some interesting apparent paradoxes.

5.1 Average test score
5.2 Grade point average
5.3 Improving averages
5.4 The Consumer Price Index
5.5 New car prices fall …
5.6 An averaging paradox
5.7 Exercises

6 Income Distribution — Spreadsheets, Charts and Statistics

This chapter covers a lot of ground — two new kinds of average (median and mode) and ways to understand numbers when they come in large quantities rather than just a few at a time: bar charts, histograms, percentiles and the bell curve. To do that we introduce spreadsheets as a tool.
Contents

6.1 Salaries at Wing Aero 132
6.2 What if? 136
6.3 Using software 136
6.4 Median 137
6.5 Bar charts 138
6.6 Pie charts 141
6.7 Histograms 142
6.8 Mean, median, mode 144
6.9 Computing averages from histograms 145
6.10 The bell curve 146
6.11 Margin of error 149
6.12 Exercises 150

7 Electricity Bills and Income Taxes — Linear Functions 169
We use an electricity bill as a hook on which to hang an introduction to functions in general and linear functions in particular, in algebra and in spreadsheets. Then we apply what we’ve learned to study taxes — sales, income and Social Security. You’ll also find here a general discussion of energy and power.
7.1 Rates 169
7.2 Reading your electricity bill 170
7.3 Linear functions 172
7.4 Linear functions in a spreadsheet 173
7.5 Which truck to rent? 177
7.6 Energy and power 178
7.7 Federal payroll taxes 180
7.8 Exercises 185

8 Climate Change — Linear Models 199
Complicated physical and social phenomena rarely behave linearly, but sometimes data points lie close to a straight line. When that happens you can use a spreadsheet to construct a linear approximation. Sometimes that’s useful and informative. Sometimes it’s misleading. Common sense can help you understand which.
8.1 Climate change 199
8.2 The greenhouse effect 203
8.3 How good is the linear model? 205
8.4 Regression nonsense 206
8.5 Exercises 209

9 Compound Interest — Exponential Growth 217
In this chapter we explore how investments and populations grow and how radioactivity decays — exponentially.
9.1 Money earns money 217
9.2 Exploring exponential growth with a spreadsheet 219
9.3 Depreciation 221
9.4 Doubling times and half-lives 222
9.5 Exponential models 225
10 Borrowing and Saving

When you borrow money — on your credit card, for tuition, for a mortgage — you pay it back in installments. Otherwise what you owe would grow exponentially. In this chapter we explore the mathematics that describes paying off your debt.

10.1 Debit and credit cards
10.2 Can you afford a mortgage?
10.3 Saving for college or retirement
10.4 Effective interest rate
10.5 Instantaneous compounding
10.6 Exercises

11 Probability — Counting, Betting, Insurance

Pierre de Fermat and Blaise Pascal invented the mathematics of probability to answer gambling questions posed by a French nobleman in the seventeenth century. We follow history by starting this chapter with simple examples involving cards and dice. Then we discuss raffles and lotteries, fair payoffs and the house advantage, insurance, and risks where quantitative reasoning doesn’t help at all.

11.1 Equally likely
11.2 Odds
11.3 Raffles
11.4 State lotteries
11.5 The house advantage
11.6 One-time events
11.7 Insurance
11.8 Sometimes the numbers don’t help at all
11.9 Exercises

12 Break the Bank — Independent Events

Unlikely things happen — just rarely! Here we calculate probabilities for combinations like runs of heads and tails. Then we think about luck and coincidences.

12.1 A coin and a die
12.2 Repeated coin flips
12.3 Double your bet?
12.4 Cancer clusters
12.5 The hundred year flood
12.6 Improbable things happen all the time
12.7 Exercises

13 How Good Is That Test?

In Chapter 12 we looked at probabilities of independent events — things that had nothing to do with one another. Here we think about probabilities in situations where we expect to see connections, such as in screening tests for diseases or DNA evidence for guilt in a criminal trial.
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 UMass Boston enrollment</td>
<td>291</td>
</tr>
<tr>
<td>13.2 False positives and false negatives</td>
<td>293</td>
</tr>
<tr>
<td>13.3 Screening for a rare disease</td>
<td>295</td>
</tr>
<tr>
<td>13.4 Trisomy 18</td>
<td>296</td>
</tr>
<tr>
<td>13.5 The prosecutor’s fallacy</td>
<td>298</td>
</tr>
<tr>
<td>13.6 The boy who cried “Wolf”</td>
<td>299</td>
</tr>
<tr>
<td>13.7 Exercises</td>
<td>300</td>
</tr>
</tbody>
</table>

Hints | 307 |

References | 313 |

Index | 337 |
Contents

Preface to the Second Edition xi

Preface to the First Edition xiii

1 Calculating on the Back of an Envelope 1
 In this first chapter we learn how to think about questions that need only good enough answers. We find those answers with quick estimates that start with reasonable assumptions and information you have at your fingertips. To make the arithmetic easy we round numbers drastically and count zeroes when we have to multiply.
 1.1 Hailing a ride 2
 1.2 How many seconds? 4
 1.3 Heartbeats 5
 1.4 Calculators 6
 1.5 Millions of trees? 7
 1.6 Carbon footprints 8
 1.7 Kilo, mega, giga 9
 1.8 Exercises 10

2 Units and Unit Conversions 27
 In real life there are few naked numbers. Numbers usually measure something like cost, population, time, speed, distance, weight, energy or power. Often what's measured is a rate, like miles per hour, gallons per mile, miles per gallon, dollars per gallon, dollars per euro or centimeters per inch.
 2.1 Rate times time equals distance 27
 2.2 The MPG illusion 29
 2.3 Converting currency 31
 2.4 Unit pricing and crime rates 33
 2.5 The metric system 34
 2.6 Working on the railroad 36
 2.7 Scientific notation, milli and micro 37
 2.8 Carpeting and paint 39
 2.9 Exercises 41
3 Percentages, Sales Tax and Discounts

The focus of this chapter is the study of relative change, often expressed as a percent. We augment an often much needed review in two ways — stressing quick paperless estimation for approximate answers and, for precision, a new technique: multiplying by $1 + (\text{percent change})$.

3.1 The federal budget
3.2 Red Sox ticket prices
3.3 The 1+ trick
3.4 Exploiting the 1+ trick
3.5 Large and small percentages
3.6 Percentage points
3.7 Percentiles
3.8 Exercises

4 Inflation

We mine the internet for data about inflation and use the 1+ technique from Chapter 3 to understand that data.

4.1 Red Sox ticket prices
4.2 Inflation is a rate
4.3 The Consumer Price Index
4.4 More than 100 %
4.5 How much is your raise worth?
4.6 The minimum wage
4.7 Inflation history
4.8 Exercises

5 Average Values

We start by remembering that to compute an average you add the values and divide by the count. We quickly move on to weighted averages, which are more common and more useful. They’re a little harder to understand, but worth the effort. They help explain some interesting apparent paradoxes.

5.1 Average test score
5.2 Grade point average
5.3 Improving averages
5.4 The Consumer Price Index
5.5 New car prices fall …
5.6 An averaging paradox
5.7 Exercises

6 Income Distribution — Spreadsheets, Charts and Statistics

This chapter covers a lot of ground — two new kinds of average (median and mode) and ways to understand numbers when they come in large quantities rather than just a few at a time: bar charts, histograms, percentiles and the bell curve. To do that we introduce spreadsheets as a tool.
10 Borrowing and Saving

When you borrow money — on your credit card, for tuition, for a mortgage — you pay it back in installments. Otherwise what you owe would grow exponentially. In this chapter we explore the mathematics that describes paying off your debt.

10.1 Debit and credit cards
10.2 Can you afford a mortgage?
10.3 Saving for college or retirement
10.4 Effective interest rate
10.5 Instantaneous compounding
10.6 Exercises

11 Probability — Counting, Betting, Insurance

Pierre de Fermat and Blaise Pascal invented the mathematics of probability to answer gambling questions posed by a French nobleman in the seventeenth century. We follow history by starting this chapter with simple examples involving cards and dice. Then we discuss raffles and lotteries, fair payoffs and the house advantage, insurance, and risks where quantitative reasoning doesn't help at all.

11.1 Equally likely
11.2 Odds
11.3 Raffles
11.4 State lotteries
11.5 The house advantage
11.6 One-time events
11.7 Insurance
11.8 Sometimes the numbers don’t help at all
11.9 Exercises

12 Break the Bank — Independent Events

Unlikely things happen — just rarely! Here we calculate probabilities for combinations like runs of heads and tails. Then we think about luck and coincidences.

12.1 A coin and a die
12.2 Repeated coin flips
12.3 Double your bet?
12.4 Cancer clusters
12.5 The hundred year flood
12.6 Improbable things happen all the time
12.7 Exercises

13 How Good Is That Test?

In Chapter 12 we looked at probabilities of independent events — things that had nothing to do with one another. Here we think about probabilities in situations where we expect to see connections, such as in screening tests for diseases or DNA evidence for guilt in a criminal trial.