Index

Abel, Niels Henrik, 121, 123
 convergence test, 233
absolute continuity, 204–205
 of an integral, 210, 212, 216
absolute convergence, 209
accuracy, numerical, 237, 242–244
Aczél, János, 186
aggregate, 2
Agnew, Ralph Palmer, 139
airline space, 23
algebra, fundamental
 theorem of, 59
algebraic numbers, 11–15
algorithms, 21
almost everywhere, 74
 continuous, 206, 274
 convergence, 220–221
differentiability, 155, 165–170, 204, 214–215
finite, 210
limit of continuous
 functions, 202
zero derivative, 160–164, 204–205
almost uniform
 convergence, 202
alphabet, 3
Alsina, James, 122
alternating series test, 233
Ampère, André Marie, 103
analytic function, 47, 69, 189–192
antecedent, 19
antiderivative, 66, 195, 206, 242
antipodal points, 100–102
antisymmetric, 238, 279
Apostol, Tom M., 228
approximation
 by nonmonotonic
 functions, 70
 by open and closed sets, 197–198
 by polygonal functions, 128
 by polynomials, 128–132
 by rational numbers, 75
 by step functions, 128
of a numerical series,
 237–243
of an integral, 229–230
of continuous functions, 126–132
of power series by partial sums, 47
arbitrary functions, 84–85, 87, 154–155
arbitrary shape, 101
arithmetic, 7, 242, 246
arithmetic mean, 181–183
Austin, Donald G., 175
automobile, 202
average, 136, 181, 215, 220
axiom of choice, xi, 200
Aziz, Abdul Kadir, 156

B, 25, 44, 47, 127
B_E, 110, 112
Baire category, see category
Baire class, 125, 201–202
Baire measure, 236
Baire’s theorem, 61–72, 123–126, 192
Baire, René, 125, 126
Baker, Richard L., xii
Balaguer, Ferran Sunyer i, 72
Bamón, Rodrigo, 138
Banach, Stefan, 72, 200
Banach-Tarski paradox, 200
Bartle, Robert G., 205
base 2 expansion, 40–42, 115–116, 152, 161–163
base 3 expansion, see base 2 expansion
basis, Hamel, 138
Beckenbach, Edwin F., 186
Beekmann, Wolfgang, 61
Beesley, E. Maurice, xii, 158
Bellman, Richard, 186
Benavides, Tomás Domínguez, 75
Bernoulli numbers, 241–242
Bernoulli polynomials, 241
Bernstein equivalence theorem, see Schroeder-Bernstein theorem
Bernstein’s theorem on analytic functions, 191–192
Bernstein, Felix, 21
Bernstein, Sergei, 191
Besicovitch, Abram Samoilovitch, 73
Bessel’s inequality, 222
bibliography of bibliographies, 4
bicontinuity, 48
big game hunting, 52
billions, 14, 237
binary expansion, see base 2 expansion
binomial theorem, 191, 264
biology, 44
bird trap, 46
bisecting areas and volumes, 101–102
bisection method, 46–47
block of digits, 244
Blumberg, H., 90
Boas, Anne Louise, vii
Boas, Harold Philip, vii, xii
Boas, Mary Elizabeth Layne, xi
Boas, Ralph Layne, vii
Boas, Ralph Philip, vii, 157, 192, 193, 243, 244
Boghossian, Artin B., 72
Bolzano-Weierstrass theorem, 45–48, 50, 59, 60, 91
Bonnet's theorem, 231
Borel, Émile, 193
Borel, Jonathan M. and Peter B., 21
Bose Majumder, N. C., 138
Botsko, Michael W., 158, 210
Bottazzini, Umberto, 111
bound of derivates, 150–151
positive lower, 89
boundary, 27
empty, 28
is closed, 30
nonempty, 35
of boundary, 28
of complement, 28
of neighborhood, 28
point, 27
bounded above, 5
convergence, 111
convergence theorem, 213
derivative, 70
functional, 234
functions, 25, 110–112, 209
continuous, 45, 46, 48, 89
not separable, 44
partial sums, 233
sequences, 24, 43, 44
set, 7, 26
variation, 203–204, 216, 226, 228, 230, 234
Bourbaki, Nicolas, 2
box of maximum volume, 182
Brennan, J. G., 104
Briggs, James M., 200
Bromwich, Thomas John l'Anson, 123
Brown, Johnny M., 138
Brownian motion, 72
Bruckner, Andrew M., xii, 90, 155, 158
Buck, Ellen F. and Robert Creighton, xi
Bunyakovsky, Victor Ya., 185
Burckel, Robert B., viii, 156, 186

C, 24, see continuous functions
C(E), 3
c₀, 23, 24, 43
Cₑ, 110, see continuous functions
calculation of π, 21
Cantor function, 161–163, 204, 216
characterization of, 174
integral of, 208
Cantor set, 39–42, 44
arithmetical description, 41
distance property, 134
first category, 64
generalized, 74–75, 206
irrational points of, 42
limit points of, 39, 40, 44
measure zero, 74, 196
nowhere dense, 40
uncountable, 41, 65
Cantor teepee, 42
Cantor’s nested set theorem, 62–63
Carathéodory’s criterion, 198, 200
cardinality, 8–20
Cargo, Gerald T., xii, 157
Carroll, Francis W., 126
Cartan, Henri, 193
Cartesian product, 79
catching a lion, 46
category, 63–65
for differentiable functions, 70–72, 193
of level sets, 152–153
of points of discontinuity, 125–126
Cater, Frank S., 76, 174, 193
Cauchy sequence, 55–58, 62, 108, 110, 222, 223
Cauchy’s inequality, 185, 186
Cauchy, Augustin-Louis, 108
error of, 108, 121
center of gravity, 180, 193
Četković, S., 157
chain of elements, 18–19
chain rule, 141
Chalice, Donald R., 174
change of variable, 261, 268
characterization of bounded set, 7
of Cantor function, 174
of continuous functions, 92
of linear functionals, 236
of polynomials, 67–69
checkerboard, 135
Chinn, William G., 104
Chittenden, Edward W., 103
chords, 96–100, 144, 175–180
Chudnovsky, David V. and Gregory V., 21
Civin, Paul, 103
Clark, H. M., xi
class, 2
Baire, 125, 201–202
Clavius, 200
clock, 100
closed interval, 6, 24, 28, 72
closed sets, 25–37
alternative definitions, 29
approximation by, 196–198
compact, 49
complements of, 29
contain limit points, 29
intersections of, 36–37
level sets, 30
measure of, 196
nowhere dense, 38
of measure zero, 174
unions of, 36–37
closure, 35–36
diameter of, 61
of neighborhood, 37
cluster point, 29
Cobb, John, 44
coffee, 102
Cohen, Paul J., xi
collection, 1, 2
common error, 151
compact set, 48–52
closed subset of, 49
continuous function on,
48–49, 57, 91–93, 100,
109, 112, 126–132
distance attained for,
60–61
largest element, 59
competent analyst, 186
complement, 3
boundary of, 28
complete, 56–58, 64, 112,
222–224
completion, 56
computation, 21, 237–243
computer, 20, 21, 195, 203,
237, 243
concave, 180, 181, 184
condensation of
singularities, 114
confusion, 86, 91, 108, 208,
229
conjecture, 160
connected set, 32–35
continuous function on,
92, 93
R₁, 35, 117
R₂, 35
connectedness: intrinsic
property, 34
consonant, 3
constant function, 78
constant, Euler’s, 240
contain, 1, 2
continuous curve, 114–117
continuous functions,
24–25, 83–89
absolutely, 204–205, 216
almost everywhere, 206,
274
approximation of,
126–132
at most two-to-one,
95–96
bounded, 45, 89
completeness of, 112
convex, 175, 177
definitions, 85–88
determined by moments,
131–132
differentiable, 140, 151
equivalence of
definitions, 88–89
everywhere oscillating, 69–70
fixed points, 100
graphs, 85
intermediate value property, 84, 92
limits of, 202
linear, 133–134
linear functionals on, 233–236
maxima, 45–46, 48–49, 92, 142
measurable, 201
neighborhood in space of, 26
nondifferentiable, 70–72, 153
of bounded variation, 204
on compact sets, 127
periodic, 97–98
pointwise convergence, 109
pointwise limits, 123–126
positive lower bound, 89
properties of, 90–102
ranges of, 93
represented by formulas, 82
separable space, 43
two-to-one, 94–95
uniform continuity, 127
uniform convergence, 110–122
velocity, 156
with connected domains, 92
with continuous inverse, 91
with equal derivatives, 164–165
with infinite derivative, 151
with zero derivative, 161–163
continuous on the right, 87, 140
continuum hypothesis, 210
convergence, 52–61
Abel’s test, 233
absolute, 209
almost uniform, 202
bounded, 111, 213
dominated, 212
Fatou’s lemma, 213
integral test, 220
mean square, 222
monotone, 214
necessary condition, 183
of derivatives, 145–147, 171–172
of monotonic functions, 159
of sequences and series, 52–56, 237–243
of sequences of functions, 108–111
of Taylor series, 189–192
pointwise, 108–109
radius of, 192
uniform, 110–122
convex curves, 102
functions, 175–186, 200
INDEX

pancakes, 102
strictly, 180
Cooke, Roger L., 200
coordinates, 17
Copson, Edward Thomas, 52, 61
Corominas, Ernest, 72
correspondence, one-to-one,
see one-to-one correspondence
countable sets, 8–20
algebraic numbers, 11
dense, 42
disjoint intervals, 30
integers, 9
jumps of monotonic functions, 159
lattice points, 10
measure zero, 74
polynomials, 11, 43
proper maxima, 142
rational numbers, 11
subsets, 10
union of, 10, 11
countably additive, 198
countably infinite, 9
counting, 8
covering, 2, 48–52, 73, 172
Cox, Raymond H., 21
cross section, 166
cross-shaped sets, 134
cup of coffee, 102
curve
area under, 195
continuous, 114–117
convex, 102, 179
space-filling, 114
cusp, 71
Darboux functions, 90
Darboux, Gaston, 89
Darst, Richard B., 158, 193
de La Vallée Poussin, Charles Jean, 126
decimals, 12–15, 17–20, 40–42, 84, 237
decomposition of a closed interval, 72
decreasing function, 158
δ-function, 228
Denjoy, Arnaud, 72
dense sets, 38–44
density, point of, 172
derivatives, 139–155
at a maximum, 142
bounds of, 150
continuous, 151
infinite, 152
mean-value theorem, 149
nonnegative, 150
of arbitrary function, 155
of continuous function, 149–151
of discontinuous function, 150, 152
of sums, 140
zero, 154
derivatives, 66, 139–155
at maximum, 142
behave worse, 148
bounded, 70
cannot jump, 151
chain rule, 141
continuous, 118
discontinuous, 151
finite, 154, 215
Fubini's theorem, 171
infinite, 140, 151, 174
integrals of, 215–216
integration by parts, 228
intermediate values, 100, 143
level sets, 152
limits of, 151, 187
nonexistent, 70–72, 153, 154
nonnegative, 149, 191
not everywhere infinite, 151
not integrable, 119, 215
of composite function, 141
of convex functions, 177
of delta function, 228
of fixed sign, 191
of infinite order, 118
of integrals, 214–215
of jump function, 161
of monotonic functions, 165–170
of periodic function, 143
of sequence, 119, 145–147
of series, 171–172
positive, 141
product of, 155
range of, 143–145
right-hand, 140
zero, 67, 142, 160–164, 204
desert, Sahara, 46
DeTemple, Duane W., 244
determinant, 135
Devlin, Keith, 21
diameter, 50, 59–61
Diamond, Harvey, 75
Diaz, Joaquín Basilio, 103, 156, 157
Dieudonné, Jean Alexandre, 156
difference quotient, 68, 143–145, 150, 178–179
differences, 133, 199
differentiation, see derivatives
dilation, 199
Dini derivates, see derivates
Dini’s theorem, 112, 122
Dini, Ulisse, 155
disconnected, totally, 42
discontinuous functions, 87, 112, 226
examples, 84, 85, 108, 125, 133, 150, 151, 159
properties, 89, 93, 114, 123, 125, 151, 153, 175
with infinite derivative, 140
dishes, 2
disjoint, 3
disk, 11, 25
dispersion point, 33
distance, 21–25
INDEX

as continuous function, 88
between sets, 61
from point to set, 88, 173
distributions, 228
diverge, 54
divergent Taylor series, 189–190
Divide et impera, 264
domain, 77
dominate, 211
dominated convergence, 212
dot product, 221
Drobot, Vladimir, 156
duality, 75, 234
Dutch, 225

e, 14, 120, 183, 240, 264
Egoroff’s theorem, 202, 205, 212
Egorov’s theorem, see Egoroff’s theorem
element, 1, 2
Elements of Euclid, 200
empty set, 2
 bounds of, 8
 countable, 9
 is open and closed, 28
engine, 202
English words, 4
ensemble, 2
epsilons, vii
equations defining
 functions, 78, 82
equilateral triangle, 255
equivalence class, 210, 217

equivalence theorem, 21
Erdős, Paul, 157, 175
ergodic theorem, 202
erratic clock, 262
error, 108, 151, 238, 243
essential supremum, 218
Euclid, 200
Euler’s constant, 240
Euler-Maclaurin formula, 239–243
everywhere dense, 38
exception, 80, 141, 155, 166
existence proof, 14, 72
expansion, formal, 221
expectation, 224
exponential function, 118, 120, 190, 191
extremal problems, 182

\[f^{-1}, 91 \]
\[f(x_0^+), f(x_0^-), 107 \]
\[f^+, f_+, f^-, f_-, 139 \]
\[f'_+, f'_-, 140 \]
factor, prime, 82
fallacious proof, 15, 141
Fast, Henryk, 90
Fatou’s lemma, 213, 223, 276
fence, 46
field, 79
Filipczak, F. M., 157
finite
 sequence, 53
 set, 9, 16
 subsets, 12
Fink, Arlington M., 186
first category, 64, 73
analytic functions are set of, 193
but not measure zero, 74
countable set need not be, 64
differentiable functions form set of, 70
duality with measure zero, 75
of level sets, 152
points of discontinuity form set of, 125, 153
Fischer, Ernst, 222, 224
fixed fraction, 75, 169, 172
fixed-point theorem, 100, 102
Flett, Thomas Muirhead, 103, 156
flowing water lemma, 166
Folland, Gerald B., 229
formal expansion, 221
formulas, 81–82
Fort’s theorem, 153–154, 157
Fort, Marion Kirkland, Jr., 157
Fourier series, 221, 225, 231
fourteenth century, 256
Fox, William C., 52
Frank, Alan, 20
Freilich, Gerald, 174
French language, 2, 123
French mathematician, 229
French, Robert M., 200
frong, 4
frontier point, 27
Frullani integrals, 139
Fubini’s theorem, 164, 171, 173, 175, 215
functional analysis, 207
functionals, 233–236
functions, 77–83
absolutely continuous, 204–205
abstract definition, 77–79
analytic, 47, 69, 189–192
approximation of, 47
arbitrary, 84–85, 87, 154–155
Baire classes, 125, 201–202
bounded, 25, 44–46, 48, 111, 209
cardinality of set of, 17
constant, 78
continuous, 83–102, 123–132
corner, 175–186
Darboux, 84
defined by equations, 78
defined by formulas, 81–82
delta, 228
differentiable, 139–155
discontinuous, 84, 86, 87, 89, 93, 112, 114, 123–126, 133, 140, 150, 153, 175
distance, 22
generalized, 140, 228
greatest integer, 158, 227, 238, 277
identity, 81
infinitely differentiable, 118, 120, 186–192
integrable, 202, 206, 208–210
inverse, 91
jump, 160
linear, 132–138
measurable, 201–205
monotonic, 113, 141, 155, 158–174
multiple-valued, 77
nondifferentiable, 70–72, 153
notations for, 80–81
of a real variable, 79
one-to-one, 91, 94
orthogonal, 221–224
oscillating, 69–70
oscillating differentiable, 70
periodic, 97–98, 143, 238, 240
polygonal, 127, 128
restriction of, 86–87
ruler, 85, 154, 158, 218
saw-tooth, 70
sequences of, 108–111
sine, 182
singular, 161–164, 174, 204
spaces of, 24–25
step, 127, 128, 214, 226, 276
strictly monotonic, 94
tangent, 247, 270
two-to-one, 94
univalent, 91
wiggly, 70
with equal derivatives, 154, 164–165
fundamental theorem
of algebra, 59
of calculus, 195, 214

Galilei, Galileo, 156
game, 52
γ, 240
Garg, Krishna Murari, 157
Gehman, Harry M., xi
Gelbaum, Bernard R., 72
Gellès, Gregory, 75
generalized
Cantor set, 74–75, 206
function, 140, 228
geometric mean, 181–183
geometric progression, 52
geometry, 21, 22
German mathematician, 229
Gillespie, D. C., 103
Gödel, Kurt, xi
Goffman, Casper, 217
Goldberg, Richard R., 52, 224
Goldowsky, G., 174
Gould, Henry W., 244
Graduate Record
Examination, 156
graph, 79, 85, 95, 100, 126, 133, 175
gravity, center of, 180, 193
292

INDEX

greatest integer function, 158, 227, 238, 277
greatest lower bound, 6, 7
Green, John W., 138
Gustin, William, 138

Haber, S., xii
Halmos, Paul R., 262
ham sandwich theorem, 102
Hamel basis, 138
Hamel, Georg, 138, 139
Hardy, Godfrey Harold, 61, 83, 138, 186, 207, 243
harmonic series, 196, 237, 242, 256
Harrold, Orville G., 103
healthy skepticism, x
Heath, Thomas L., 200
Hegyvári, Norbert, 244
Heine-Borel theorem, 49–51
converse of, 51
in \mathbb{R}^2, 50
heirloom, vii
Heligoland bird trap, 46
Hellmann, M. S., 21
Hersch, Joseph, 139
Heuer, Gerald A., 158
Hewitt, Edwin, 217
Hildebrandt, Theophil Henry, 72
historical reasons, 241
Hobson, Ernest William, 156
Hölder’s inequality, 185
home-made supercomputer, 21
Hopf, Heinz, 103, 104
horizontal chords, 97–99, 144
Hrbáček, Karel, 138
Huggins, Frank N., 206
hunting, 52
Hurewicz, Witold, 122
hypotenuse, 248
idea, misleading, 237
identity function, 81
image, 79
inverse, 88
not necessarily open, 88
improper
integral, 279
maxima, 142
increasing
at a point, 141, 155
bounded sequence, 57
function, 113, 141, 149, 158
indefinite integrals, 117, 119, 195, 214, 216
inequality
arithmetic and geometric means, 181
Bessel, 222
between sines and cosines, 182
Cauchy, 185
for integrals, 181
Hölder, 185
Jensen, 180–182, 185
midpoint, 176
Minkowski, 24, 184
Schwarz, 185, 221, 223
triangle, 22
inf, infimum, 6, 7
infinite
derivative, 70–71, 140, 151, 152, 174
measure, 197
numbers, 7
sequences, 23–24, 55–61
series, 52–55, 189, 237–243
sets, 8–20, 45–47
infinitely differentiable functions, 118, 120, 186–192
inner measure, 198
inner product, 221
instruction, undergraduate, 225
integer points of \mathbb{R}^2, 10, 26
integers, 8, 19
integrable functions, 202, 206, 208–210
Riemann, 117, 118
integral test, 220, 239
integrals, 195–243
collection is countable, 30
Riemann, 206
Stieltjes, 224–236
vanishing of, 66
integration by parts, 187, 227, 228, 231–233, 239–241, 275
integration of sequences, 117–122, 212–214
intercept, 102, 262
interior, 26
intermediate value property, 84–85
applications of, 93–102
for continuous functions, 92
for derivatives, 143, 156
intersection, 3
of closed sets, 36–37
of open sets, 37
interval, 6
closed, as a union of closed sets, 72
collection is countable, 30
open and closed, 28
intrinsic property, 34
inverse
collection is countable, 30
image, 88
tangent, 164
Italian edition, 155

Jech, Thomas, 138
Jensen’s inequality, 180–182, 185
joggers, 104
Johnson, Peter D., Jr., 72
INDEX

jump, 85, 151, 159–161
jump function, 160

Kaplansky, Irving, 61
Kestelman, Hyman, 138, 175

Klamkin, Murray S., 186
Kleiner, Israel, 83
König, Heinz, 186

Kraft, Roger L., 138
Krantz, Steven George, 193

Kuczma, Marek, 186

Kuratowski, Kazimierz, 37

L^2, 221–224
L^2, 24
$L^2 \cap C$, 25, 109
L^p, 217

La Vallée Poussin, Charles Jean de, 126
Landau, Edmund, 132

Laplace transforms, 224
lattice points, 10

law of the mean, see
mean-value theorem

least upper bound, 5
property, 5–7, 56

Lebesgue
differentiation theorem, 175
integral, 206–224
measurable, 197, 201
measure, 195–200

Lebesgue, Henri Leon, 90, 126, 175, 207
Lebesgue-Stieltjes integrals, 224

Lee, Ken W., 138
left-hand derivative, 140

Lehmer, Derrick Henry, 244

lemma
Fatou, 213
flowing water, 166
Riesz, 166
rising sun, 166

level sets, 152

Levit, Robert J., 103
Lévy, Paul, 103, 262

librarian, 4

limit of
derivative, 151, 187
function, 107
integral, 136–138, 279
integration, 227

monotonic function, 159
sequence, 54–56, 58

boundedly convergent, 111
increasing, 57
nonuniformly convergent, 112, 114
of continuous functions, 108, 123–126
of derivatives, 145–147
of differentiable functions, 119
of monotonic functions, 113
uniformly convergent, 110–122

sums approximating an integral, 226
INDEX

limit point, 29–30, 45–46, 58–59
limit, lower (lim inf), 104–107
limit, upper (lim sup), 104–107
line, supporting, 179
linear
 functionals, 233–236
 functions, 132–138
lion, 46
Liouville numbers, 75
Lipiński, Jan Stanislaw, 174
Littlewood, John Edensor, 138, 186
locus, 23, 173–174
log 2, 121
logarithm, 80
logical difficulties, 4
Lorch, Edgar Raymond, 126
Lorch, Lee, 122
lower
 bound, 6
 limit, 109
 sums, 208

\[m, \ 24, \ 43, \ 44 \]
\[m(E), \ 197 \]
\[M\text{-test}, \ 111, \ 115, \ 159, \ 163, \ 264 \]
Majumder, N. C. Bose, 138
mapping, 79
Markus (Marcus), Solomon, 157
masses, 224
maxima, 6, 142
comparing by
 integration, 217–219
improper, 142
number of, 142–143
of compact set in \(\mathbb{R}_1 \), 59
of functions, 46, 93, 142
proper, 142
May, Kenneth Ownsworth, 138
McCarthy, John, 72
McHugh, James A. M., 193
McLeod, Robert M., 211
meager set, 64
mean-value theorem,
 143–145, 229–230
Bonnet, 231
generalized, 148–149, 152
means, arithmetic and
 geometric, 181–182
measurable
 functions, 201–205
 sets, 197
measure
 Baire, 236
 Borel, 236
 finite, 210
 inner, 198
 Lebesgue, 195–200
 of an interval, 196
 of points at given
 distance from a set, 173–174
 outer, 172, 197, 198
 positive, 134, 211
 zero, 73–75, 160, 165, 209
mechanics, 224
member, 1
memorial, vii
Memory, J. D., 104
Menger, Karl, 83
Metcalf, Frederic T., 103
metric, 22
 space, 21–25
middle thirds, 39, 134
midpoint inequality, 176
Miller, Anthony D., 157
million, 20
minimum, 6
Minkowski’s inequality, 24, 184, 186, 218, 223
Minty, George J., 83
Mirkil, Hazleton, 193
misleading idea, 237
Mitrinović, Dragoslav S., 186
model, 79
molecule, 102
moment, 131, 224
monotone convergence, 112, 214
monotonic functions, 94, 158–174
 bounded, 159, 226
 bounded variation, 203
 convergence of, 159
 differentiability, 155, 161, 165–170
 integral test, 220
 jumps of, 159–160
 limits, 159
 measurable, 201
 sequence of, 113
 series of, 171–172
 singular, 161
 strictly, 158
Morayne, Michal, 156
Morgenstern, Dietrich, 193
Morse, Anthony Perry, xii, 73, 157, 158
motions, rigid, 200
mountain, 104, 166
μ(E), 172
multiple-valued, 77
Munroe, Marshall Evans, 52
neighborhood, 25, 37
 boundary of, 28
 closure of, 36, 37
 diameter of, 61
 in C, 26
 in lattice, 26
 is open, 26, 28
nested sets, 61–62
Ng, Che Tat, 186
nineteenth century, 59, 70, 108
Niven, Ivan Morton, 21, 186
noncollinear points, 50
nondecreasing function, 113, 149, 150, 158, 171, 174, 177, 213, 230
nondifferentiable functions, 70–72
nonincreasing function, 158
nonmeasurable set, 198, 200
norm, 218, 221
Norton, Alec, 158
nowhere dense sets, 38–44, 63, 66, 67, 69, 71
 closed, 38
 complement of dense open set, 69
 perfect, 39
 singletons, 65
nowhere differentiable, 70–72, 122, 131, 154, 273
null set, 209
number of subsets, 16–17
number theory, 14, 135
numbers
 algebraic, 11–15
 rational, 11
 real, 5–8
 transcendental, 12, 14–15, 75
Nurcombe, J. R., 186
Nymann, J. E., 158

Oehring, Charles C., xii
Olmsted, John Meigs
Hubbell, xii, 72
one-sided derivative, 140, 177, 178
one-to-one correspondence, 8
Cantor set and real numbers, 42
continuous functions and sequences, 132
infinite set and proper subset, 15
integers and even integers, 9
interval and line, 16
interval and square, 17, 117
sequences and numbers, 20
sets of integers and real numbers, 19, 20
one-to-one function, 91
open and closed set, 28, 29, 32
open intervals, 28
open sets, 25–37
 alternative definitions, 29
 complement closed, 29
 disjoint from boundary, 29
 images and inverse images of, 88
 measure of, 196
 neighborhoods, 28
 structure in \mathbb{R}_1, 30
 union and intersection, 37
openness: not intrinsic property, 33
operator, 79
ordered pair, 22, 77–80, 91
ordinates of maxima, 142, 156
Oresme, Nicole, 256
orthogonal functions, 221–224
orthonormal, 221
oscillating curve, 32
oscillating function, 69–70, 203
Osgood, William Fogg, 126, 268
Ostrowski, Alexander M., 186
outer measure, 172, 197, 198
Oxtoby, John C., xii, 75, 103, 104
Paige, Lowell J., 157
Pambuccian, Victor, 90
pancake, 101–102
paradox, 4, 16, 200, 227
parametric equations, 115, 116
Parks, Harold R., 193
partial summation, 232
partial sums, 47, 52, 54, 233, 237–243
partition, 206–208, 236
pea, 200
Peano curve, 114
Pečarić, Josip E., 186
pencil, 85, 242
perfect set, 37
continuous functions on, 125
nowhere dense, 38
periodic functions, 97–98, 115, 143, 238, 240, 242
Pétard, H. W. O., 52
Petersen, Bent E., 229
Pfaff, Donald C., 158

\(\pi \), 14, 20, 237
picnic table, 104
piecewise monotonic, 158, 177
Piranian, George, 174
Plancherel, Michel, 139
Plato, 156
Plaza, Sergio, 138
point, 1
as nowhere dense set, 38, 65
of density, 172
pointwise convergence, 108–109, 123–126
Pólya, George, 122, 138, 139, 156, 186
polygonal function, 127, 128
polynomials, 59
approximating continuous functions, 43, 128–132
Bernoulli, 241
characterized by vanishing derivatives, 67–69
extremal problems for, 182
power series reducing to, 47
with integral coefficients, 11–12, 20
Pompeiu, Dimitrie, 156
Pondiczery, Ersatz Stanislaw, 52
Porter, Gerald J., 158
Posey, Eldon E., 156
positivity of metric, 22
INDEX

Poussin, Charles Jean de La Vallée, 126
power series, 47, 189–192
Preston, Richard, 21
Priestley, William McGowen, 75
prime factors, 82
primitives, 195
probability, 72, 207, 224
product
 Cartesian, 79
 of continuous functions, 90–91
 of sets, 3
progression, geometric, 52
pronunciation, 225
proper
 maximum, 142
 subset, 2, 15
pure existence proof, 14
pure jump function, 160
quadrillionth, 14
quantum mechanics, 225
quotients of continuous functions, 90–91
Rᵣ, 23
 compact subsets, 45, 49, 51
 complete, 57
 connected, 32, 35
density in, 172–173
measure in, 73, 199
separable, 43
uncountable, 15
radius, 25
 of convergence, 192
Radó, Tibor, 175
Randolph, John F., 138
range, 77
 of continuous functions, 92, 93
 of derivatives, 143–145
rational numbers countable, 11
rational points
 Bolzano-Weierstrass fails for, 47
 boundary of, 249
dense, 38, 42
disconnected, 32
incomplete, 64
neither open nor closed, 29
no interior, 26
real functions, 3, 79
real numbers, 5–8
 not countable, 15
 number of sequences of, 20
 number of sets of, 17
real variable, ix, 79
reciprocal, 91
Redheffer, Raymond M., 193
Reich, Ludwig, 138
Reich, Simeon, 157
Reichbach, Marian, 21
remainder (Taylor’s theorem), 187
repeated integrals, 66
restriction, 78
INDEX

continuous, discontinuous, 86–87
Riemann integration, 206, 209, 222
Riemann zeta function, 243
Riemann-Stieltjes integrals, 224–228
Riesz representation theorem, 233–236
Riesz’s lemma, 166–168, 170
Riesz, Frigyes, 158, 166, 174, 175, 205, 222, 224, 234
Riesz-Fischer theorem, 222, 224
right-hand derivative, 140
rigid motions, 200
rising sun lemma, 166, 269
Roberts, John Henderson, 103
Rolle’s theorem, 103, 104, 156
Rooij, Arnoud C. M. van, 126
Rosenbaum, J. T., 104
Rosenthal, Arthur, 193
Ross, Kenneth A., 229
Rosser, J. Barkley, 83
Rota, Gian-Carlo, 139
Royden, Halsey L., 205
Rubel, Lee A., 174, 175
Rudin, Walter, 76, 217
rule, 79
chain, 141
divide and, 264
of arithmetic, 246
ruler function, 85, 154, 158, 218
Sack, John, 52
Sahara desert, 46
Saks, Stanislaw, 73, 155, 156, 174
Salzmann, Helmut R., 193
Samelson, Hans, 156
sandwich theorem, 102
saw-tooth function, 70
scalar
field, 79
product, 221
Schaffter, Thomas, 200
Schiff, Leonard I., 225, 228
Schikhof, Wilhelms
Hendricus, 126
Schoenberg, Isaac Jacob, 122
Schroeder-Bernstein
theorem, 18–20
Schwartz, Laurent, 229
Schwarz’s inequality, 185, 221, 223, 229
Schwarz, Hermann
Amandus, 186, 229
second category, 64, 258
complete metric space is, 64
function continuous and not differentiable at points of set of, 153
nowhere differentiable functions are set of, 71
set of, with measure
zero, 74, 75
second derivative, 179
Seebach, J. Arthur, Jr., 44
Segal, Arthur C., xii, 158
separable, 42–44
sequence, 78–81
 bounded, 24, 43, 44, 59
 boundedly convergent, 111
Cauchy, 55–58
convergence of, 52–56
differentiation of, 119,
 145–147
finite, 53, 80
increasing, 57
integration of, 117–122,
 212–214
monotone convergence,
 112
of functions, 108–111,
 201
of moments, 131
of numbers, 20, 53
of partial sums, 54
orthogonal, 221
orthonormal, 221
pointwise convergence,
 108
uniform convergence,
 110–122
upper and lower limits,
 104–107
sequence spaces, 23–24
series, 52–55
 connection with
 integrals, 220–221
convergence of, 183, 214
differentiation of, 164,
 171–173
divergent, summed, 55
Fourier, 225, 231
harmonic, 196, 237, 242,
 244, 256
M-test, 111
numerical computation
 of, 237–243
of continuous functions,
 108, 121
of monotonic functions,
 171–172
of orthogonal functions,
 221–224
partial sums of, 237–243
power, 47, 224
special, summed,
 120–122, 237
Stieltjes integrals applied
to, 232–233
Taylor, 189–192
trigonometric, 207, 225,
 231
set of all sets, 4, 16
sets, 1–4
 arbitrary, as metric
 spaces, 25
 Borel, 198
 boundary of, 27
 bounded, 7, 26, 45, 49
 Cantor, 39–42, 74–75
category of, 64
closed, 28
connected, 32
countable, 9
dense, 38–44
density of, 172–173
disjoint, 3
empty, 2
finite, 9
first category and
 positive measure, 74
infinite, 9, 15
interior of, 26
intersection of, 3
measurable, 197, 198
nested, 61–62
nonmeasurable, 198–200
nowhere dense, 38–44
nowhere dense perfect, 39
null, 209
of distances, 133
of limit points, 30
of measure zero, 73–75, 173, 198
of positive integers, 19
of positive measure, 199, 206, 211
of real numbers, 5–8
open, 28
perfect, 37, 38
product of, 3
second category and
 measure zero, 74
uncountable, 9, 14–15
uncountable and
 measure zero, 74
union of, 3
Shanks, Daniel, 20
Shkarin, S. A., 73
Shuchat, Alan Howard, xii
sibling, vii
Sierpiński, Waclaw, 83, 90, 155, 200
Sierpiński’s theorem, 73
Silverman, Stephen, 138
Simoson, Andrew, 200
sine function, 78, 182, 190
Singh, Avadhesh Narayan, 157
singular functions, 161–164, 174
size of sets, 73–75
slope, ix, 72, 100, 147, 177, 179, 262
snake, 33
Solovay, Robert M., 200
sophomore, 44
space, 2, 21
 complete, 56, 64, 112
 metric, 21–25
 separable, 42
space-filling curve, 114
spaces, special
 B, 25, 44, 47, 127
 B_E, 110
 C, 24, 26, 108, 233
 c_0, 23, 24, 43
 C_E, 110
 integral points, 26, 38
 L^2, 221–224
 l^2, 24
 $L^2 \cap C$, 25, 109
 L^p, 217, 236
 m, 24, 43, 44
 R_n, 23
INDEX

rational points, 29, 47, 56, 62
square, 17, 33, 115, 116, 134, 182
Squire, William, 244
staircase, 96
Steen, Lynn Arthur, 44
Steenrod, Norman Earl, 104
Steinhaus, Hugo, 138, 200
step functions, 127–128, 214, 226, 276
Stieltjes integrals, 224–236, 238
Stieltjes, Thomas Jan, 225
stirring coffee, 102
Stone, Arthur H., 104
strictly monotonic function, 94
Stromberg, Karl Robert, 200, 217
student, 21, 44, 79, 151, 237
subsequence principle, 59, 63
subset, 2
 countable, 10, 15
 of compact set, 49
 of countable set, 10
 of finite set, 16
 of infinite set, 15
 of metric space, 25, 57, 58
 proper, 2, 15
success, 234
sum
 connection with integral, 220–221
 of continuous functions, 90–91
 of series, 52
 of sets, 3
 upper and lower, 208
summability method, 55, 61
summation by parts, 232
sun, rising, 166
Sunyer i Balaguer, Ferran, 72
supercomputer, 21
supporting line, 179
supremum, 5, 6
 essential, 218
symbols
 \subset, \supset, \in, 2
 \cup, \cap, 3
 ∞, 6, 7, 77, 140, 210, 211
 (a, b), $[a, b]$, etc., 6
 $C(E)$, 3
 $f(x_0^+)$, $f(x_0^-)$, 107
 f^+, f^-, etc., 139
 f^{-1}, 91
 $\|f\|_\infty$, 218
 $\|f\|_p$, 218
 $\{x\}$, 2
 $[x]$, 158
symmetry, 242, 249
 in the origin, 101, 102
 of metric, 22, 248, 259
Szász, Otto, 61
Szegö, Gabor, 122, 156
Szökefalvi-Nagy, Béla, 158, 174, 175, 205
Takács, Lajos, 174
tangent function, 247, 270
tangents, 71, 122, 143, 147, 179, 180
Tannery's theorem, 120
Tarski, Alfred, 200
Taylor series, 189
divergent, 189–190
Taylor's theorem, 67, 187
Taylor, Gerald D., 158
teepee, 42
teeth, 70, 215
telecoping sum, 98, 215, 223, 235, 277, 279
ter Horst, H. J., 229
termwise
differentiation, 118–119, 145–147, 264
integration, 117–120, 214
ternary expansion, see base 3 expansion
Thurston, Hugh A., xii
Titchmarsh, Edward Charles, 216
topology, 115
total variation, 203, 216, 279
totally disconnected, 42
transcendental, 12
transformation, 79
translation, 199
triangle inequality, 22
triangle of largest area, 50
Tricomi, Francesco Giacomo, 103
trigonometric series, 207, 221, 225, 231
Tucker, Albert William, 104
Tukey, John Wilder, 104
two-place accuracy, 237
two-to-one functions, 94

Ulam, Stanislaw M., 210
unbounded set, 27
uncountable sets, 9
 Cantor set, 41, 65
 points where \(f^+(x) \leq C \), 149
 polynomials, 43
 real numbers, 15, 65
undergraduate instruction, 225
uniform continuity, 127–128
uniform convergence,
 110–122
 almost, 202
 and continuity, 112
 and differentiation, 119, 146
 and integration, 117
union, 3
 of closed sets, 36–37
 of countable sets, 10, 11
 of open sets, 37
 of sets of measure zero, 74
 supremum of, 8
univalent, 91
universal chord theorem,
 98–100, 144
 negative part, 99
upper
 bound, 5
INDEX

limit (lim sup), 105, 106, 109
sums, 208

Vallée Poussin, Charles Jean de La, 126
values of a function, 79
van Rooij, Arnoud C. M., 126
Varberg, Dale E., 156
Varga, Richard S., 224
variable, 79
variation
 bounded, 203–204, 216, 226, 228, 230, 234
 total, 203, 216, 279
Vaughan, Jerry E., 156
vector field, 79
velocity, 156
Vera, Jaime, 138
Vitali, Giuseppe, 205
vowels, 3, 245
Voxman, William L., 44
Výborný, Rudolf, 157

Wadhwa, A. D., 243
Wagon, Stan, 200
Walker, Peter L., 217
Walsh, John L., xi
Walter, Wolfgang L., 186
Wang, Shun-Hwa, 244
water, flowing, 166
Wayment, Stanley G., 156
Weierstrass approximation theorem, 132, 267
Weierstrass M-test, 111
weighted means, 181, 182
Weil, Clifford E., 72
Wen, Liu, 122
Whyburn, Gordon Thomas, 122
Widder, David Vernon, xi, 132, 228
Wiener, Norbert, 202
wiggly function, 70
Wilansky, Albert, 37, 138
Williams, K. P., 107
Woodruff, Edythe P., 156
Wrench, John W., Jr., 20
Young’s theorem, 157
Young, Gail S., 138
Young, William Henry, 157
Youngs, John William Theodore, 122
Zajíček, Luděk, 175
Zamfirescu, Tudor, 174
Zeller, Karl, 61, 193
zeta function, 243
Zitronenbaum, A. C., 104
Zygmund, Antoni, 90, 138