Contents

Foreword xi
Problems, exercises, circles, and olympiads xi
Why this book, and how to use it xiii
English-language references xiii

Introduction xv
What this book is about and who it is for xv
Learning by doing problems xvi
A message By A. Ya. Kanel-Belov xvii
Olympiads and mathematics xvii
Research problems for high school students xviii
How this book is organized xviii
Sources and literature xviii
Acknowledgments xix
Grant support xix
Numbering and notation xx
Notation xx

Chapter 1. Divisibility 1
1. Divisibility (1) 1
Suggestions, solutions, and answers 2
2. Prime numbers (1) 4
Suggestions, solutions, and answers 5
3. Greatest common divisor (GCD) and least common multiple (LCM) (1) 6
Suggestions, solutions, and answers 7
4. Division with remainder and congruences (1) 8
Hints 9
5. Linear Diophantine equations (2) 10
Suggestions, solutions, and answers 11
6. Canonical decomposition (2*) 12
Suggestions, solutions, and answers 14
7. Integer points under a line (2*) 14
Suggestions, solutions, and answers 15
Chapter 2. Multiplication modulo p

1. Fermat’s Little Theorem (2)
Suggestions, solutions, and answers

2. Primality tests (3*) By S. V. Konyagin
Hints
Suggestions, solutions, and answers

3. Quadratic residues (2*)
Hints
Suggestions, solutions, and answers

4. The law of quadratic reciprocity (3*)
Suggestions, solutions, and answers

5. Primitive roots (3*)
Suggestions, solutions, and answers

Hints
Suggestions, solutions, and answers

Chapter 3. Polynomials and complex numbers

1. Rational and irrational numbers (1)
Suggestions, solutions, and answers

2. Solving polynomial equations of the third and fourth degrees (2)
Hints
Suggestions, solutions, and answers

3. Bezout’s Theorem and its corollaries (2)
Suggestions, solutions, and answers

Hints and answers

5. Applications of complex numbers (3*)
Hints and answers

6. Vieta’s Theorem and symmetric polynomials (3*)
Suggestions, solutions, and answers

7. Diophantine equations and Gaussian integers (4*) By A. Ya. Kanel-Belov
Suggestions, solutions, and answers

8. Diagonals of regular polygons (4*) By I. N. Shnurnikov
Suggestions, solutions, and answers

9. A short refutation of Borsuk’s conjecture
Suggestions, solutions, and answers

Chapter 4. Permutations

1. Order, type, and conjugacy (1)
Hints and answers
CONTENTS

2. The parity of a permutation (1)
Hints and answers
3. The combinatorics of equivalence classes (2)
Answers

Chapter 5. Inequalities
1. Towards Jensen’s inequality (2)
Hints
Suggestions, solutions, and answers
2. Some basic inequalities (2)
Hints
Suggestions, solutions, and answers
3. Applications of basic inequalities (3*)
By M. A. Bershtein
Hints
Suggestions, solutions, and answers
4. Geometric interpretation (3*)
Suggestions, solutions, and answers

Chapter 6. Sequences and limits
1. Finite sums and differences (3)
Hints
Suggestions, solutions, and answers
2. Linear recurrences (3)
Hints
Suggestions, solutions, and answers
3. Concrete theory of limits (4*)
Suggestions, solutions, and answers
4. How does a computer calculate the square root? (4*)
By A. C. Vorontsov and A. I. Sgibnev
Suggestions, solutions, and answers
5. Methods of series summation (4*)
Hints
Suggestions, solutions, and answers
6. Examples of transcendental numbers
6.A. Introduction (1)
6.B. Problems (3*)
6.C. Proof of Liouville’s Theorem (2)
6.D. Simple proof of Mahler’s Theorem (3*)

Chapter 7. Functions
1. The graph and number of roots of a cubic polynomial
1.A. Introduction
1.B. Problems
Hints
1.C. Statements of the main results
1.D. Proofs
2. Introductory analysis of polynomials (2)
Hints
3. The number of roots of a polynomial (3*)
Hints
Suggestions, solutions, and answers
4. Estimations and inequalities (4*) By V. A. Senderov
Suggestions, solutions, and answers
5. Applications of compactness (4*) By A. Ya. Kanel-Belov
Suggestions, solutions, and answers

Chapter 8. Solving algebraic equations
1. Introduction and statement of results
1.A. What is this chapter about?
1.B. Constructibility (1)
1.C. Insolvability in real radicals
1.D. Insolvability in complex radicals (2)
1.E. What is special about our proofs
1.F. Historical comments
1.G. Constructions with compass and straightedge (1)
Hints
2. Solving equations: Lagrange’s resolvent method
2.A. Definition of expressibility in radicals of a polynomial (1)
2.B. Solution of equations of low degrees (2)
Suggestions, solutions, and answers
2.C. A reformulation of the constructibility in Gauss’s Theorem (2)
Suggestions, solutions, and answers
2.D. Idea of the proof of constructibility in Gauss’s Theorem (2)
2.E. Proof of the constructibility in Gauss’s Theorem (3)
2.F. Efficient proofs of constructibility (4*)
Suggestions, solutions, and answers
3. Problems on insolvability in radicals
3.A. Representability using only one square root (1–2)
First hints
Suggestions, solutions, and answers
3.B. Multiple square root extractions (3*)
Suggestions, solutions, and answers
3.C. Representing a number using only one cube root (2)
Suggestions, solutions, and answers
3.D. Representing a number using only one root of prime order (3*)
Suggestions, solutions, and answers
3.E. There is only one way to solve a quadratic equation (2)
Suggestions, solutions, and answers
3.F. Insolvability “in real polynomials” (2)
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Suggestions, solutions, and answers</td>
<td>170</td>
</tr>
<tr>
<td>3.G. Insolvability “in polynomials” (3)</td>
<td>170</td>
</tr>
<tr>
<td>Suggestions, solutions, and answers</td>
<td>171</td>
</tr>
<tr>
<td>3.H. Insolvability in complex numbers (4*)</td>
<td>172</td>
</tr>
<tr>
<td>3.I. Expressibility with a given number of radicals (4*)</td>
<td>173</td>
</tr>
<tr>
<td>4. Proofs of insolvability in radicals</td>
<td>175</td>
</tr>
<tr>
<td>4.A. Fields and their extensions (2)</td>
<td>175</td>
</tr>
<tr>
<td>4.B. Insolvability “in real polynomials” (3)</td>
<td>176</td>
</tr>
<tr>
<td>4.C. Insolvability “in polynomials” (3)</td>
<td>177</td>
</tr>
<tr>
<td>4.D. Non-constructibility in Gauss’s Theorem (3*)</td>
<td>179</td>
</tr>
<tr>
<td>4.E. Insolvability “in real numbers”</td>
<td>181</td>
</tr>
<tr>
<td>4.F. Insolvability “in numbers” (4*)</td>
<td>182</td>
</tr>
<tr>
<td>4.G. Kronecker’s Theorem (4*)</td>
<td>184</td>
</tr>
<tr>
<td>4.H. The real analogue of Kronecker’s Theorem (4*)</td>
<td>187</td>
</tr>
<tr>
<td>Bibliography</td>
<td>189</td>
</tr>
<tr>
<td>Index</td>
<td>195</td>
</tr>
</tbody>
</table>