Index

C-optimal interpolant, 3
C^m selection problems, 11, 142
ALPs, 54
assisted bounded depth
linear functionals, 101, 104, 106
linear operators, 101, 104, 106
set of assists, 101
blobs, 54
Brenner-Epstein-Hochster-Kollár problem, 136, 138–139
bundles, 9, 75
base, 75
fibers, 9, 75
Glaeser stability, 79, 83
norm, 79
sections, 9, 75
strata, 83
lowest stratum, 83
subbundles, 9, 75
vector-valued analogues, 137–138
convex sets
for C^m
$\Gamma(x, M)$, 32
$\Gamma(x, M)$ and $\sigma(x)$ (with tolerance ϵ), 44
$\Gamma(x, k, M)$ (for bundles), 84
$\Gamma \ell$ and $\sigma \ell$ (first family), 32, 45–46
$\Gamma \ell$ and $\sigma \ell$ (general properties), 62–63
$\Gamma \ell$ and $\sigma \ell$ (second family), 49
$\Gamma \ell$ and $\sigma \ell$ (third family), 51–58
for Sobolev spaces
$\Gamma \ell(x, M)$ and $\sigma E(x)$, 105–106
cubes
bisection, 16
dyadic cubes, 17
dyadic children, 17
dyadic parent, 17
sidelength, 16
function spaces
$C^m(\mathbb{R}^n, Y)$, 135
$C^m,\omega(\mathbb{R}^n)$, 2
$C^m(\mathbb{R}^n)$, 2
$L^{m,p}(\mathbb{R}^n)$, 8
$W^{m,p}(\mathbb{R}^n)$, 2, 8
generalized finiteness theorem for C^m,ω, 60
generalized Whitney problem for bundles, 9, 75
Glaeser refinement, 10, 76–79
stable Glaeser refinement, 79
vector-valued analogues, 137
Hausdorff distance, 147
Helly’s theorem, 41
jet space
\mathcal{R}_x-module \mathcal{R}_x^D, 137
ring $(\mathcal{R}_x, \mathcal{O}_x)$ of $(m - 1)$-jets, 143
ring $(\mathcal{R}_x, \mathcal{O}_x)$ of m-jets, 9, 75, 137
linear extension operators, 34, 100
assisted bounded depth, 101
bounded depth, 34
Lipschitz constant, 26, 38
Lipschitz selection problems, 13, 145
local interpolation problems (C^m), 63–65
labels, 64–66
monotonic labels, 66
order relation $<$, 64
local interpolation problems (Sobolev), 106–107
labels, 107
metric trees, 147
modulus of continuity, 59
multiindices, 1
order, 1
order relation $<$, 63
Nagata dimension, 147
outliers, 7, 35–37
polynomial basis
(\mathcal{A}, δ)-basis for $L^{m,p}$, 107
$(\mathcal{A}, \delta, C_B)$-basis for C^m, 64
\((A, \delta, C_B)\)-basis for shape fields, 143–144

semialgebraic sets and functions, 139
shape fields, 143
Sobolev embedding theorem, 99
sparsification, 102, 153
Steiner point, 148

Taylor’s theorem, 31
trace space/trace norm, 2
\(C^m(E), 10\)
\(C^m(E, Y), 135\)
\(X(E), X = L^{m,p} \) or \(W^{m,p}, 8, 99\)

well-separated pairs decomposition, 26–29, 51–52

Whitney convexity
for shape fields, 143
Whitney \(\omega\)-convexity, 59
Whitney \(t\)-convexity, 47, 63

Whitney’s extension theorem, 15–20, 61
Whitney cube, 16
Whitney decomposition, 16–18
good geometry, 17
Whitney extension, 20
Whitney field, 15
Whitney partition of unity, 18–19