Contents

Preface ix

1 Vector Spaces 1
1.1 Sets and Logic 1
1.2 Basic Definitions 10
1.3 Properties of Vector Spaces 14
1.4 Subtraction and Cancellation 19
1.5 Euclidean Spaces 23
1.6 Matrices 31
1.7 Function Spaces 35
1.8 Subspaces 43
1.9 Lines and Planes 50
 Project: Quotient Spaces 59
 Project: Vector Fields 61
 Summary: Chapter 1 63
 Review Exercises: Chapter 1 64

2 Systems of Linear Equations 67
2.1 Notation and Terminology 67
2.2 Gaussian Elimination 77
2.3 Solving Linear Systems 84
2.4 Applications 91
 Project: Numerical Methods 96
 Project: Further Applications of Linear Systems 97
 Summary: Chapter 2 99
 Review Exercises: Chapter 2 100

3 Dimension Theory 103
3.1 Linear Combinations 104
3.2 Span 110
3.3 Linear Independence 119
3.4 Basis 128
3.5 Dimension 131
3.6 Coordinates 140
 Project: Infinite-Dimensional Vector Spaces 147
 Project: Linear Codes 148
 Summary: Chapter 3 149
 Review Exercises: Chapter 3 150

Contents

8 **Eigenvalues and Eigenvectors** 333
 8.1 Definitions 333
 8.2 Similarity 339
 8.3 Diagonalization 346
 8.4 Symmetric Matrices 353
 8.5 Systems of Differential Equations 360
 Project: Graph Theory 371
 Project: Numerical Methods for Eigenvalues and Eigenvectors 373
 Summary: Chapter 8 374
 Review Exercises: Chapter 8 375

Hints and Answers to Selected Exercises 379

Index 415