Contents

Preface ix

Chapter 1. Basics of Graphs 1
 1.1. Graphs as Models 1
 1.2. Representations of Graphs 4
 1.3. Graph Parameters 7
 1.4. Common Graph Classes 9
 1.5. Graph Operations 12
 1.6. Distance 15
 1.7. Bipartite Graphs 18
 1.8. Generalizations of Graphs 20
 Exercises 23

Chapter 2. Trees and Connectivity 35
 2.1. Trees 35
 2.2. Tree Algorithms 39
 2.3. Connectivity 42
 2.4. Menger’s Theorem 46
 Exercises 53

Chapter 3. Structure and Degrees 63
 3.1. Eulerian Graphs 63
 3.2. Graph Isomorphism 67
 3.3. Degree Sequences 73
 3.4. Degeneracy 78
 Exercises 87

v
Chapter 4. Vertex Coloring
 4.1. Applications of Coloring 101
 4.2. Coloring Bounds 103
 4.3. Coloring and Operations 109
 4.4. Extremal \(k\)-chromatic Graphs 111
 4.5. Perfect Graphs 115

Exercises 119

Chapter 5. Planarity
 5.1. The Four Color Theorem 131
 5.2. Planar Graphs 134
 5.3. Kuratowski’s Theorem 139
 5.4. Dual Graphs and Geometry 145
 5.5. Genus of Graphs 154

Exercises 158

Chapter 6. Hamiltonian Graphs
 6.1. Finding Hamiltonian Cycles 168
 6.2. Hamiltonian Applications 174
 6.3. Hamiltonian Planar Graphs 179
 6.4. Tournaments 181

Exercises 186

Chapter 7. Matchings
 7.1. Bipartite Matchings 197
 7.2. Tutte’s 1-Factor Theorem 203
 7.3. Edge Coloring 206
 7.4. Tait Coloring 209
 7.5. Domination 212

Exercises 217

Chapter 8. Generalized Graph Colorings
 8.1. List Coloring 227
 8.2. Vertex Arboricity 230
 8.3. Grundy Numbers 231
 8.4. Distance and Sets 233

Exercises 238

Chapter 9. Decompositions
 9.1. Decomposing Complete Graphs 246
 9.2. General Decompositions 253
 9.3. Ramsey Numbers 256
9.4. Nordhaus-Gaddum Theorems 264
Exercises 269

Chapter 10. Appendices 277
10.1. Proofs 277
10.2. Counting Techniques and Identities 290
10.3. Computational Complexity 298
10.4. Bounds and Extremal Graphs 302
10.5. Graph Characterizations 305

Nomenclature 309
Bibliography 313
Index 329