Index

abundant number, E6.3.3 (177)
accomplice, (154)
additive arithmetic function, D6.1.4 (166)
(completely), D6.1.5 (166)
characterization of, T6.8.1 (207)
additive basis, T12.3.3− (397), E12.3.10 (403)
additive complement, 12.6 (412–419)
Agrawal–Kayal–Saxena primality test (AKS), 157
algebraic element, D10.1.4 (313)
degree of, deg 𝜇, D10.1.5 (313)
minimal polynomial of, 𝑚, D10.1.5 (313)
algebraic integer, D9.6.1 (306)
algebraic number, D9.1.1 (285)
approximation of, T9.4.1 (296), T9.4.3 (298), T9.4.4 (298)
conjugate over 𝘾, D10.4.1 (331)
degree of, deg 𝜉, D10.4.4 (334), T10.4.5 (334)
relative conjugate of, f(𝜇(j)), D10.4.2 (332), T10.4.3 (333)
algebraic number field, 𝘽(𝜉), D10.2.1 (315), T10.2.3 (316)
algebraically closed field, P9.3.6+ (294)
amicable numbers, E6.3.7 (178)
approximation of, T9.4.1 (296), T9.4.3 (298), T9.4.4 (298)
congruence, 𝑎 ≡ 𝑏(mod 𝑚), D2.1.1 (37)
of algebraic integers, T9.4.1 (296), T9.4.3 (298)
of irrational numbers, 8.1 (263–270)
of rational numbers, E8.1.1 (268)
simultaneous, T8.1.3 (265), T8.1.4 (265)
arithmetic function, D6.1.1 (165)
additive, D6.1.4 (166)
completely additive, D6.1.5 (166)
completely multiplicative, D6.1.3 (166)
multiplicative, D6.1.2 (166)
arithmetic progressions, monochromatic, T12.4.4 (406), T12.4.4A (406)
primes in, (116), T5.3.1 (125)
average order function = mean value function
average order of magnitude of φ(n), T6.7.4+ (197)
of σ(n), T6.7.3+ (196)

basis (additive), T12.3.3− (397), E12.3.10 (403)
basis, integral, in 𝑄(𝜇), 𝜉1, ..., 𝜉𝑛, D10.5.1 (336), T10.5.4 (338)
Bertrand’s postulate (Chebyshev’s theorem), T5.5.3+ (135)
binomial congruence, T3.5.1 (88)
C = complex numbers
canyon theorem, T6.4.1 (178)
Carmichael number, D5.7.3 (152)
Cauchy–Davenport–Chowla theorem, T12.3.1 (395)
ceiling, ⌈ ⌉, P1.2.1 (11)
characterization of additive arithmetic functions, T6.8.1 (207)
Chebyshev’s inequality, P6.7.7+ (202), P12.1.1 (378)
Chebyshev’s theorem, T5.5.3 (135)
Chevalley’s theorem, T3.6.1 (91)
Chinese Remainder Theorem, T2.6.2 (59)
class number, T11.6.3 (373)
colorings, T12.4.2 (405), T12.4.4 (406), T12.4.4A (406)
commensurability of segments, E1.3.17 (21)
common divisor, greatest, (a, b), gcd{a, b}, D1.3.1 (15), D7.4.9 (225)
common divisor, special, (a, b), D1.3.2 (15)
common multiple, least, [a, b], lcm{a, b}, D1.6.5 (30)
commutative field, 𝐹, T2.8.3+ (69)
commutative group, P2.8.5+ (69)
complement (additive), 12.6 (412–419)
completely economic (CEC), T12.6.2− (415)
complete residue system, D2.2.2 (41), T2.2.3 (42)
completely additive arithmetic function, D6.1.5 (166)
completely economic complement (CEC), T12.6.2− (415)
completely multiplicative arithmetic function, D6.1.3 (166)
congruence, a ≡ b (mod m), D2.1.1 (37)
for Eulerian integers, D7.7.8 (245)
for numbers a + b√3, P5.2.4 (122)
modulo prime powers, T3.7.1 (96)
binary, xk ≡ a (mod p), T3.5.1 (88)
linear, ax ≡ b (mod m), D2.5.1 (52), T2.5.3 (53)–T2.5.5 (55)
number of solutions of, D2.5.2 (53)
quadratic, x2 ≡ a (mod p), D4.1.1 (101)
conjugate over 𝑄, 𝜇(j), D10.4.1 (331)
Index

relative, \(f(\vartheta(j))\), D10.4.2 (332), T10.4.3 (333)

continued fraction, 8.3 (275–281)
digit, D8.3.1 (275)

convolution, \(f \ast g\), D6.6.1 (190)

coprime = relatively prime, D1.3.7 (18)
pairwise, D1.3.8 (18)

covering congruences, 12.5 (408–412)
disjoint (DCC), E12.5.6 (412)

cryptography, 5.8 (160–165)
cryptosystem, public key, 5.8 (160–165)

cyclotomic polynomial \(\Phi_m\), P5.3.4 (126)

d\(d(n) = \) number of (positive) divisors of \(n\),
T1.6.3 (29)

d\(d_k(n)\), D6.2.6 (171), T6.2.7 (171)

decimal fraction, E3.2.20 (79)

deficient number, E6.3.3 (177)

deg = degree

degree of algebraic element, deg \(\vartheta\), D10.1.5 (313)
of algebraic number, deg \(\alpha\), D9.2.4 (289)
of field extension, deg(M : L), D10.1.2 (311)
of polynomial modulo \(m\), deg \(f\), D3.1.1 (73)
derivative of a polynomial, \(f'\), T3.7.1 (96),
P5.3.4 (126)

Diffie–Hellman principle, (160)

Diophantine approximation, 8.1 (263–270)

Diophantine equation, T1.3.6 (18)

linear, T1.3.6 (18), T7.1.1 (212)

Dirichlet series, \(F(s)\), D6.6.3 (192)

Dirichlet’s theorem (on primes in arithmetic progressions), T5.3.1 (125)
discrete logarithm = index, ind \(a\), ind \(g\) \(a\),
D3.4.1 (86)

discriminant of \(Q(\vartheta)\), P10.5.4+ (338)
of \(n\)-tuples in \(Q(\vartheta)\), \(\Delta(\alpha_1, \ldots, \alpha_n)\),
D10.5.2 (337)
disjoint covering congruences (DCC),
E12.5.6 (412)
divisibility, divisor, \(b \mid a\), D1.1.1 (7), D7.4.4 (224)
among Gaussian integers, \(\beta \mid \alpha\), D7.4.4 (224)
among ideals, \(B \mid A\), D11.4.3 (359)
among integers, \(b \mid a\), D1.1.1 (7)
divisibility laws, E1.1.14 (10)

division algorithm (for integers), T1.2.1 (11), T1.2.1A (12)
in Euclidean rings, D11.3.4 (353)

for Gaussian integers, T7.4.8 (224)
divisors, number of, \(d(n)\), T1.6.3 (29)
divisors, sum of, \(\sigma(n)\), D6.2.1 (170), T6.2.2 (170)

e is irrational, T9.5.1 (301)
e is transcendental, T9.5.3 (303)

Egyptian fraction, E7.3.6 (222)
elementary symmetric polynomial, \(\sigma_j\),
T9.3.1+ (291)
equivalence relation, P2.1.2+ (38)
equivalent ideals, D11.6.1 (373)

Eratosthenes, sieve of, T5.1.2 (114)

Euclidean algorithm, P1.3.3 (16)
Euclidean ring, D11.3.4 (353), T11.3.5 (354)

Euler–Fermat Theorem, T2.4.1 (50)

Eulerian integer, \(\alpha = a + b\omega\), D7.7.4 (244)

Eulerian prime, T7.7.7 (245)
Eulerian rational, 9.6.E3 (306)

Euler’s function \(\varphi(n)\), D2.2.7 (43), T2.3.1 (47)

Euler’s theorem for partitions, T7.9.5 (258)
even numbers, number theory of, P1.1.3+ (8), P1.4.3+ (22), P1.5.1− (24)

extension = field extension

\(F\): denotes a commutative field in general
\(F[x] = \) ring of polynomials over the field \(F\)

\(\varphi(n) = \) Euler’s function \(\varphi, D2.2.7 (43),
T2.3.1 (47)

factor ring, \(R/I\), T11.1.6 (344)

Fermat number, \(F_n\), 5.2 (118–125)

primality test for, T5.2.2 (119)

(prime) divisors of, T5.2.1 (119)

Fermat prime, \(F_n\), E1.4.4 (23), 5.2
(118–125)

Fermat’s Last Theorem, T7.7.1 (241)

for exponent 3, T7.7.10 (247)

for exponent 4, T7.7.2 (242)

Fermat’s Little Theorem, T2.4.1A (50),
T2.4.1B (51)

Fibonacci number, \(\varphi_n\), E1.2.5 (13)

field, \(F\), T2.8.3+ (69)

algebraically closed, P9.3.6+ (294)

field extension, \(M : L\), D10.1.1 (311)

degree of, deg(M : L), D10.1.2 (311)

finite, D10.1.2 (311)

quadratic, \(Q(\sqrt{7})\), 10.3 (320–331)
simple, \(Q(\vartheta)\), D10.2.1 (315), T10.2.2 (315)
simple algebraic, D10.2.1 (315), T10.2.3 (316)
tower theorem, T10.1.3 (312)
finitely generated, D10.1.2 (311)
finite extension, D10.1.2 (311)

fundamentally generated ideal, \((a_1, \ldots, a_k)\),
D11.1.4 (343)
fractional part, \(\{ \cdot \}\), P8.1.2 (264)
congruent, \(\equiv\), D2.1.1 (37)

identity, identity element (for multiplication), 1, e, E1.1.23a (11)
imaginary quadratic field, T10.3.6 (327)
incongruent = not congruent, \(\not\equiv\), D2.1.1+ (37)

infinite descent, P7.5.3+ (232)
infinite product, E5.6.6 (148), E5.6.7 (148)

irrational number, approximation of, 8.1 (263–270)
irrationality of \(e\), T9.5.1 (301)

\(\sqrt{n}\), E1.6.33a (36)
\(\log_b a\), E1.6.33b (36)
of \(\pi\), T9.5.2 (302)
of \(\sqrt{2}\) (geometrically), E1.3.17e (21)

irreducible, ideal, D11.4.6 (360)
number, D1.4.1 (21)

joyce, symbol, \(\left(\frac{a}{m}\right)\), D4.3.1 (109)
kth power non-residue, D3.5.2 (89)
residue, D3.5.2 (89), T3.5.3 (89)
König–Rados theorem, T3.6.2 (93)
Kronecker’s theorem (for ideals), T11.5.5
(366)
lattice, T8.2.1 (270), L8.2.2 (271)
least absolute value, remainder of, r
T1.2.1A+ (12)
least common multiple, $[a, b]$, lcm{a, b}
D1.6.5 (30)
standard form of, T1.6.6 (30)
least non-negative remainder, r, P1.2.1+
(11)
Legendre’s formula = standard form of $n!$
T1.6.8 (32)
Legendre symbol, $(\frac{a}{p})$
D4.1.3 (102)
linear Diophantine equation, $ax + by = c$
T1.3.6 (18), T7.1.1 (212)
linear congruence, $ax \equiv b$ (mod m),
D2.5.1 (52), T2.5.3 (53)–T2.5.5 (55)
Liouville’s approximation theorem, T9.4.1
(296)
Liouville number, E9.4.1 (300)
lower integer part = floor
Lucas–Lehmer test (for Mersenne numbers), T5.2.4
(122)
$\mu(n)$ = Möbius function, D6.2.3 (170)
maximal ideal, D11.4.6+ (360)
mean value function (= mean value),
D6.7.1 (195)
of $d(n)$, T6.4.3 (179), T6.4.4 (181)
of $\varphi(n)$, T6.7.4 (197)
of $\omega(n)$, T6.7.6 (200)
of $\Omega(n)$, E6.7.5 (206)
of $\sigma(n)$, T6.7.3 (196)
measure zero, D8.1.7 (266)
Mersenne number, M_p, 5.2 (118–125)
primality test for, T5.2.4 (122)
(prime) divisors of, T5.2.3 (121)
Mersenne prime, M_p, E1.4.4 (23), 5.2
(118–125)
Miller–Lenstra–Rabin primality test,
T5.7.5 (156)
minimal polynomial of algebraic element,
m_α, D10.1.5 (313)
of algebraic number m_α, D9.2.1 (288)
Minkowski’s theorem, T8.2.1 (270)
modulus of congruence, m
D2.1.1+ (37)
monochromatic arithmetic progressions,
T12.4.4 (406), T12.4.4A (406)
Möbius function, $\mu(n)$, D6.2.3 (170)
Möbius inversion formula, T6.5.3 (187)
multiple, D1.1.1 (7), D7.4.4 (224)
least common, $[a, b]$, lcm{a, b}, D1.6.5
(30)
multiple roots of polynomials, P5.3.4 (126)
multiplicative arithmetic function, D6.1.2
(166)
(completely), D6.1.3 (166)
multiplicative inverse, T2.8.3– (69)
n!, standard form of (=
Legendre’s formula), T1.6.8 (32)
norm in algebraic number fields, $N(\alpha)$,
D10.4.4 (334)
in quadratic fields, D10.3.3 (323)
of Eulerian integers, D7.7.5 (244)
of Gaussian integers, D7.4.2 (223),
T7.4.3 (223)
of quaternions, P7.5.4+ (232)
number of ideal classes, T11.6.3 (373)
number of solutions of congruences,
D2.5.2 (53)
number systems, T1.2.2 (12)
$\omega(n)$ = number of distinct (positive) prime
divisors of n, D6.2.5 (171)
$\Omega(n)$ = number of “all” (positive) prime
divisors of n
counted with multiplicity), D6.2.5 (171)
order (modulo m), $o(a)$, $o_m(a)$, D3.2.1 (76)
Ore number, E6.3.6 (177)
p_n; denotes the nth prime in general
$\pi(x)$ = number of primes not greater than
x, T5.4.1– (128)
lower and upper bounds, T5.4.3 (130)
pairwise coprime = pairwise relatively
prime, D1.3.8 (18)
partition, D7.9.1 (256)
peak theorem, T6.4.2 (179)
Pell’s equation, T7.8.1 (251), T7.8.2 (253)
Pepin’s test = primality test for Fermat
numbers, T5.2.2 (119)
perfect number, D6.3.1 (176), T6.3.2 (176)
polynomial, cyclotomic, Φ_m, P5.3.4 (126)
degree modulo m of, D3.1.1 (73)
derivative of, f', T3.7.1 (96), P5.3.4 (126)
multiple roots of, P5.3.4 (126)
Index

primitive, E11.5.9 (372)
power non-residue (k-th), D3.5.2 (89)
residue (k-th), D3.5.2 (89), T3.5.3 (89)
primalty test, Agrawal–Kayal–Saxena, (157)
based on Fermat’s Little Theorem, T5.7.2 (152)
for Fermat numbers, T5.2.2 (119)
for Mersenne numbers, T5.2.4 (122)
Miller–Lenstra–Rabin, T5.7.5 (156)
Solovay–Strassen, T5.7.4 (153)
prime, prime number, p, D1.4.2 (21)
prime divisors, number of all, \(\Omega(n) \), D6.2.5 (171)
prime divisors, number of distinct, \(\omega(n) \), D6.2.5 (171)
prime formulas, (116)
prime ideal, D11.4.7 (360)
prime ideal domain, D11.3.2 (352), T11.3.3 (352)
pseudoprime, of base \(a \), D5.7.3 (152)
universal, D5.7.3 (152)
public key cryptosystem, 5.8 (160–165)
Pythagorean triple, T7.2.1 (216)
primitive, T7.2.1 (216)
principal ideal, (\(a \)), D11.1.2 (342)
principal ideal domain, D11.3.2 (352), T11.3.3 (352)
pseudo-prime, of base \(a \), D5.7.3 (152)
real quadratic field, T10.3.6– (327)
reciprocity law, T4.2.3 (106)
reduced residue class, modulo an ideal in factor
rings \(a + I \), T11.1.6 (344)
modulo \(m \) at congruences, (\(a \)), (\(a \))\(_m \), D2.2.1 (41)
reduced, D2.2.6 (43)
residue, quadratic, D4.1.1 (101)
residue system, complete, D2.2.2 (41), T2.2.3 (42)
reduced, D2.2.8 (43), T2.2.9 (43)
Riemann Hypothesis, T6.6.4– (193)
Riemann zeta function, \(\zeta(s) \), E5.6.6 (148), T6.6.4– (193)
ring, R, P2.8.2+ (68)
Euclidean, D11.3.4 (353), T11.3.5 (354)
with unique prime factorization, T11.3.1 (351)
Roth’s approximation theorem, T9.4.4 (298)
RSA scheme, T5.8.1 (162)
\(\sigma(n) \) = sum of (positive) divisors of \(n \), D6.2.1 (170), T6.2.2 (170)
Schur numbers, T12.4.2+ (405)
Schur’s theorem, T12.4.2 (405)
Sidon set, 12.2 (386–394)
Sieve of Eratosthenes, T5.1.2 (114)
simple algebraic extension of \(\mathbb{Q} = \) algebraic number field

R = real numbers
Re = real part (of complex numbers)
Ramsey number, T12.4.1+ (404)
Ramsey’s theorem, T12.4.1 (404)
rational numbers, approximation of, E8.1.1 (268)
real quadratic field, T10.3.6– (327)
reduced residue system, D2.2.8 (43), T2.2.9 (43)
relative conjugate in \(\mathbb{Q}(\theta) \), \(f(\theta(j)) \), D10.4.2 (332), T10.4.3 (333)
relatively prime, D1.3.7 (18)
pairwise, D1.3.8 (18)
probability of, T6.7.5 (198)
remainder (at division algorithm), \(r \), P1.2.1+ (11)
of least absolute value, T1.2.1A+ (12)
least non-negative, P1.2.1+ (11)
remainder number system, P2.6.E2- (62)
repeated squarings, (77), P5.7.1 (149)
repunit, E1.3.12 (20)
residue class, modulo an ideal in factor
rings \(a + I \), T11.1.6 (344)
modulo \(m \) at congruences, (\(a \)), (\(a \))\(_m \), D2.2.1 (41)
reduced, D2.2.6 (43)
residue, quadratic, D4.1.1 (101)
residue system, complete, D2.2.2 (41), T2.2.3 (42)
reduced, D2.2.8 (43), T2.2.9 (43)
Riemann Hypothesis, T6.6.4– (193)
Riemann zeta function, \(\zeta(s) \), E5.6.6 (148), T6.6.4– (193)
ring, R, P2.8.2+ (68)
Euclidean, D11.3.4 (353), T11.3.5 (354)
with unique prime factorization, T11.3.1 (351)
Roth’s approximation theorem, T9.4.4 (298)
RSA scheme, T5.8.1 (162)
\(\sigma(n) \) = sum of (positive) divisors of \(n \), D6.2.1 (170), T6.2.2 (170)
Schur numbers, T12.4.2+ (405)
Schur’s theorem, T12.4.2 (405)
Sidon set, 12.2 (386–394)
Sieve of Eratosthenes, T5.1.2 (114)
simple algebraic extension of \(\mathbb{Q} = \) algebraic number field
simple extension, \(\mathbb{Q}(\theta) \), D10.2.1 (315),
T10.2.2 (315)
simultaneous approximation, T8.1.3 (265),
T8.1.4 (265)
simultaneous system of congruences, 2.6
(58–65)
smallest ideal, T11.1.3 (342), T11.1.5 (343)
smallest (sub)field, T10.2.2 (315)
Smith determinant, T6.5.4 (188)
Solovay–Strassen primality test, T5.7.4
(153)
special common divisor, \((a, b)\), D1.3.2 (15)
squarefree integer, E1.6.10 (34)
squareful number, E5.6.1f (147)
standard form (of integers), T1.6.1 (28)
of divisor, T1.6.2 (28)
of Gaussian integers, P7.5.1 (230)
of greatest common divisor, T1.6.4 (29)
of ideals, T11.5.9– (370)
of least common multiple, T1.6.6 (30)
modified, T1.6.1+ (28)
of \(n!\), T1.6.8 (32)
summation function, \(f^+\), E6.5.1 (186)
superperfect number, E6.3.5 (148)
symmetric polynomial, T9.3.1+ (291)
elementary \(\sigma_j\), T9.3.1+ (291)
symmetric polynomials, fundamental
theorem, T9.3.2 (291)
Szemerédi’s theorem, T12.4.5 (407)

Three Squares Theorem, T7.5.2 (232)
Thue’s approximation theorem, T9.4.3
(298)
Thue’s lemma, E7.5.21a (236)
totally additive/multiplicative =
completely additive/multiplicative
tower theorem, T10.1.3 (312)
transcendence of \(e\), T9.5.3 (303)
of \(\log n\), E9.3.7 (295)
transcendental number, D9.1.2 (286)
existence of, T9.1.3 (286), T9.4.2 (297)
trivial divisor, D1.4.1- (21)
trivial ideal, 11.1.E4, (342)
twin primes, (114)
Two Squares Theorem, T7.5.1 (230)

uniform distribution, D8.4.3 (282), T8.4.4
(282)
unique prime factorization =
Fundamental Theorem of Arithmetic
unit, \(\varepsilon\), D1.1.2 (8), D7.4.6 (224)
(among Eulerian integers), T7.7.6 (245)

among Gaussian integers), D7.4.6
(224), T7.4.7 (224)
(among integers), D1.1.2 (8), T1.1.3 (8)
in quadratic fields), T10.3.4 (323)
universal pseudoprime, D5.7.3 (152)
upper integer part = ceiling
Van der Waerden numbers, T12.4.4A+
(406)
Van der Waerden’s theorem, T12.4.4 (406),
T12.4.4A (406)
Waring’s problem, 7.6 (236–241)
Weyl’s theorem, T8.4.4 (282)
Wiles’ theorem = Fermat’s Last Theorem,
T7.7.1 (241)
Wilson’s theorem, T2.7.1 (66), P3.1.2+ (74)
witness, (154)

\(\mathbb{Z}\) = integers
\(\mathbb{Z}_m\) = ring of modulo \(m\) residue classes,
T2.8.2 (68)
zero divisor, T2.8.5– (69)
zeta function, \(\zeta(s)\), E5.6.6 (148), T6.6.4–
(193)
Selected Published Titles in This Series

48 Róbert Freud and Edit Gyarmati, Number Theory, 2020
47 Michael E. Taylor, Introduction to Analysis in One Variable, 2020
46 Michael E. Taylor, Introduction to Analysis in Several Variables, 2020
45 Michael E. Taylor, Linear Algebra, 2020
44 Alejandro Uribe A. and Daniel A. Visscher, Explorations in Analysis, Topology, and Dynamics, 2020
43 Allan Bickle, Fundamentals of Graph Theory, 2020
42 Steven H. Weintraub, Linear Algebra for the Young Mathematician, 2019
41 William J. Terrell, A Passage to Modern Analysis, 2019
40 Heiko Knospe, A Course in Cryptography, 2019
39 Andrew D. Hwang, Sets, Groups, and Mappings, 2019
38 Mark Bridger, Real Analysis, 2019
37 Mike Mesterton-Gibbons, An Introduction to Game-Theoretic Modelling, Third Edition, 2019
36 Cesar E. Silva, Invitation to Real Analysis, 2019
35 Álvaro Lozano-Robledo, Number Theory and Geometry, 2019
34 C. Herbert Clemens, Two-Dimensional Geometries, 2019
33 Brad G. Osgood, Lectures on the Fourier Transform and Its Applications, 2019
32 John M. Erdman, A Problems Based Course in Advanced Calculus, 2018
31 Benjamin Hutz, An Experimental Introduction to Number Theory, 2018
30 Steven J. Miller, Mathematics of Optimization: How to do Things Faster, 2017
29 Tom L. Lindstrom, Spaces, 2017
27 Shahriar Shahriari, Algebra in Action, 2017
24 Helene Shapiro, Linear Algebra and Matrices, 2015
23 Sergei Ovchinnikov, Number Systems, 2015
22 Hugh L. Montgomery, Early Fourier Analysis, 2014
21 John M. Lee, Axiomatic Geometry, 2013
20 Paul J. Sally, Jr., Fundamentals of Mathematical Analysis, 2013
17 Peter Duren, Invitation to Classical Analysis, 2012
16 Joseph L. Taylor, Complex Variables, 2011
14 Michael E. Taylor, Introduction to Differential Equations, 2011
12 John P. D’Angelo, An Introduction to Complex Analysis and Geometry, 2010
11 Mark R. Sepanski, Algebra, 2010
10 Sue E. Goodman, Beginning Topology, 2005
9 Ronald Solomon, Abstract Algebra, 2003

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/amstextseries/.