Contents

Introduction 1
 Structure of the book 1
 Exercises 2
 Short overview of the individual chapters 2
 Technical details 4
 Commemoration 4
 Acknowledgements 5

Chapter 1. Basic Notions 7
 1.1. Divisibility 7
 Exercises 1.1 9
 1.2. Division Algorithm 11
 Exercises 1.2 13
 1.3. Greatest Common Divisor 15
 Exercises 1.3 19
 1.4. Irreducible and Prime Numbers 21
 Exercises 1.4 23
 1.5. The Fundamental Theorem of Arithmetic 24
 Exercises 1.5 27
 1.6. Standard Form 28
 Exercises 1.6 33

Chapter 2. Congruences 37
 2.1. Elementary Properties 37
 Exercises 2.1 40
2.2. Residue Systems and Residue Classes 41
Exercises 2.2 44
2.3. Euler's Function φ 46
Exercises 2.3 49
2.4. The Euler–Fermat Theorem 50
Exercises 2.4 51
2.5. Linear Congruences 52
Exercises 2.5 57
2.6. Simultaneous Systems of Congruences 58
Exercises 2.6 64
2.7. Wilson's Theorem 66
Exercises 2.7 67
2.8. Operations with Residue Classes 68
Exercises 2.8 70

Chapter 3. Congruences of Higher Degree 73
3.1. Number of Solutions and Reduction 73
Exercises 3.1 75
3.2. Order 76
Exercises 3.2 78
3.3. Primitive Roots 80
Exercises 3.3 84
3.4. Discrete Logarithm (Index) 86
Exercises 3.4 87
3.5. Binomial Congruences 88
Exercises 3.5 90
3.6. Chevalley's Theorem, König–Rados Theorem 91
Exercises 3.6 95
3.7. Congruences with Prime Power Moduli 96
Exercises 3.7 98

Chapter 4. Legendre and Jacobi Symbols 101
4.1. Quadratic Congruences 101
Exercises 4.1 103
4.2. Quadratic Reciprocity 104
Exercises 4.2 108
4.3. Jacobi Symbol 109
Exercises 4.3 111
Chapter 5. Prime Numbers 113
5.1. Classical Problems 113
Exercises 5.1 117
5.2. Fermat and Mersenne Primes 118
Exercises 5.2 124
5.3. Primes in Arithmetic Progressions 125
Exercises 5.3 127
5.4. How Big Is $\pi(x)$? 128
Exercises 5.4 133
5.5. Gaps between Consecutive Primes 134
Exercises 5.5 139
5.6. The Sum of Reciprocals of Primes 140
Exercises 5.6 147
5.7. Primality Tests 149
Exercises 5.7 157
5.8. Cryptography 160
Exercises 5.8 163

Chapter 6. Arithmetic Functions 165
6.1. Multiplicative and Additive Functions 165
Exercises 6.1 167
6.2. Some Important Functions 170
Exercises 6.2 173
6.3. Perfect Numbers 175
Exercises 6.3 177
6.4. Behavior of $d(n)$ 178
Exercises 6.4 185
6.5. Summation and Inversion Functions 186
Exercises 6.5 189
6.6. Convolution 190
Exercises 6.6 193
6.7. Mean Value 195
Exercises 6.7 206
6.8. Characterization of Additive Functions 207
Exercises 6.8 209

Chapter 7. Diophantine Equations 211
7.1. Linear Diophantine Equation 212
Exercises 7.1 214
7.2. Pythagorean Triples 215
Exercises 7.2 217

7.3. Some Elementary Methods 218
Exercises 7.3 221

7.4. Gaussian Integers 223
Exercises 7.4 229

7.5. Sums of Squares 230
Exercises 7.5 235

7.6. Waring's Problem 236
Exercises 7.6 240

7.7. Fermat's Last Theorem 241
Exercises 7.7 249

7.8. Pell's Equation 251
Exercises 7.8 255

7.9. Partitions 256
Exercises 7.9 261

Chapter 8. Diophantine Approximation 263

8.1. Approximation of Irrational Numbers 263
Exercises 8.1 268

8.2. Minkowski's Theorem 270
Exercises 8.2 274

8.3. Continued Fractions 275
Exercises 8.3 280

8.4. Distribution of Fractional Parts 281
Exercises 8.4 283

Chapter 9. Algebraic and Transcendental Numbers 285

9.1. Algebraic Numbers 285
Exercises 9.1 288

9.2. Minimal Polynomial and Degree 288
Exercises 9.2 290

9.3. Operations with Algebraic Numbers 291
Exercises 9.3 294

9.4. Approximation of Algebraic Numbers 296
Exercises 9.4 300

9.5. Transcendence of e 301
Exercises 9.5 306

9.6. Algebraic Integers 306
Exercises 9.6 308

Chapter 10. Algebraic Number Fields 311
 10.1. Field Extensions 311
 Exercises 10.1 314
 10.2. Simple Algebraic Extensions 315
 Exercises 10.2 319
 10.3. Quadratic Fields 320
 Exercises 10.3 330
 10.4. Norm 331
 Exercises 10.4 334
 10.5. Integral Basis 335
 Exercises 10.5 340

Chapter 11. Ideals 341
 11.1. Ideals and Factor Rings 341
 Exercises 11.1 345
 11.2. Elementary Connections to Number Theory 347
 Exercises 11.2 350
 11.3. Unique Factorization, Principal Ideal Domains, and Euclidean Rings 350
 Exercises 11.3 355
 11.4. Divisibility of Ideals 357
 Exercises 11.4 361
 11.5. Dedekind Rings 363
 Exercises 11.5 366
 11.6. Class Number 373
 Exercises 11.6 376

Chapter 12. Combinatorial Number Theory 377
 12.1. All Sums Are Distinct 377
 Exercises 12.1 384
 12.2. Sidon Sets 386
 Exercises 12.2 393
 12.3. Sumsets 394
 Exercises 12.3 402
 12.4. Schur's Theorem 403
 Exercises 12.4 407
 12.5. Covering Congruences 408
 Exercises 12.5 412