Contents

Preface vii
To the Student xvii
Acknowledgement xxii

1 Rational Numbers and Missing Numbers 1
1.1 Integers 2
1.2 Rational Numbers 3
1.3 Missing Numbers 4
1.4 Number Lines 7
1.5 Many Number Lines 9
1.6 Historical Note: Other Missing Numbers 10

2 Limit Points and Sequences 13
2.1 Intervals and Limit Points 15
2.2 Sequences and Convergence 16
2.3 Historical Note: Zeno’s Paradox 19

3 Decimal Representations of Numbers 21
3.1 Infinite Decimal Representations 22
3.2 Rational Numbers as Infinite Decimals 24
3.3 Existence and Uniqueness 27
3.4 Historical Note: The Hindu-Arabic Numerals 30

4 Complete Number Lines 35
4.1 The Completeness Axiom 36
4.2 The Square Root of 17 37
4.3 Historical Note: The Archimedean Dilemma 38

5 Continuity 41
5.1 Definitions and Examples 42
5.2 Generating Continuous Functions 46
5.3 Missing Numbers as Intermediate Values 47
5.4 Uniform Continuity 49
5.5 Historical Note: Continuity via Infinitesimals 51
6 Calculus
 6.1 Integrals 54
 6.2 Derivatives 58
 6.3 The Fundamental Connection 61
 6.4 Historical Note: Calculus via Infinitesimals 62

7 Log and Exponential Functions 65
 7.1 Rational Exponents 66
 7.2 Natural Logarithm 67
 7.3 Exponents Reveal More Missing Numbers 69
 7.4 Historical Note: The 19th-Century Transition 72

8 The Real Number Line 75
 8.1 The Non-Negative Real Numbers $\mathbb{R}_{\geq 0}$ 76
 8.2 The Real Number Line \mathbb{R} 85
 8.3 All Number Lines 89
 8.4 Historical Note: The Hyperreal Numbers 90

9 The Price of Completeness 93
 9.1 Cantor's Set Theory 94
 9.2 Lebesgue's Measure Theory 97
 9.3 Historical Note: More Infinities! 98

A Historical Summary 101

B The Reals via Dedekind Cuts 105
 B.1 Rational and Ghost Downsets 106
 B.2 Construction of the Number Line 107
 B.3 Rational and Irrational Numbers 112

C Guidelines for the Instructor 115
 C.1 Chapter Options 115
 C.2 Teaching through Guided Inquiry 116

Bibliography 121

Index 123