Index

adjacency matrix, 5
adjoint, 99
  of a matrix, 84
  operator, 81
Axiom of Choice, 203

balls, 31
  open, 32
Banach space, 202
best subspace problem, 9, 91, 171
Bolzano-Weierstrass Theorem, 37, 44, 46, 50
Cauchy-Schwarz-Bunyakovsky
  Inequality, 24
CFW Theorem, 111
closed, 31, 32
  relatively, 38
  subspace, 67
closest point, 67
  calculation, 71
  for a convex set, 73
coercive, 53, 54
compact, 31, 37, 43, 44, 54, 75
  completeness, 31, 54, 59
  component functions, 43
  continuous, 35, 41, 43
  ε − δ, 55
  component-wise, 43
eigenvalues, 116
matrix multiplication, 42
  norm, 43
  sequentially, 59
topologically, 59
convergence, 51, 52
  component-wise, 56
convexity, 55
  for a set, 55
  for a function, 55
coordinates, 56
  in an orthonormal basis, 63
Courant-Fischer-Weyl Min-Max
  Theorem
  for singular values, 163
Courant-Fischer-Weyl Min-max
  Theorem, 111
CSB inequality, 24
degree, 5
density
  of full rank operators, 166
  of invertible matrices, 167
  of symmetric matrices with simple
eigenvalues, 168
direct sum of subspaces, 14

Eckart-Young-Mirsky, 93
Eckart-Young-Mirsky Theorem, 11
  for Frobenius norm, 185, 186
  for operator norm, 182, 184
eigenvalues
- continuity, 116
- interlacing, 120
- min-max characterization, 111
- relation to singular values, 147, 159
- Weyl's inequality, 118
- equivalence
  - for continuity, 46
  - for norms, 34, 45, 46, 52

Fundamental Theorem of Linear Algebra, 18, 84, 85

Gram-Schmidt Process, 65

graph, 4

graph Laplacian, 7

gray-scale matrix, 7

Hilbert space, 204

induced norm, 25

inner product, 22, 61

- dot product, 22
  - for product space, 126

Frobenius norm, 23

invariant subspace, 104

Kabsch-Umeyama Algorithm, 197

length of a path, 4

low rank approximation, 11, 93

- for Frobenius norm, 185, 186
- for matrices and Frobenius norm, 187
- for matrices and operator norm, 184
- for operator norm, 183, 184

minimization, 53

- minimizers, 53
- minimizing sequences, 53

Moore-Penrose Pseudo-Inverse, 10

Moore-Penrose pseudo-inverse, 72, 179

- for matrices, 181

norm, 13, 49

- continuity of, 46
  - definition, 20
- equivalence, 34, 45, 46, 52
- Euclidean, 21

- Frobenius, 23, 161
  - induced by inner product, 25, 99, 124
  - max, 21
  - on \(\mathbb{R}^d\), 21
  - operator, 25
  - sub-multiplicative matrix norm, 28
  - taxi-cab, 21

- normed vector space, 20

- nullity, 18
- nullspace, 18

- open, 51
  - balls, 52
- relatively, 58

Orthogonal

- Procrustes Problem, 11

- orthogonal, 61

- decomposition, 78
- complement, 73, 104
- Procrustes Problem, 95, 188, 190
- orthogonal matrix, 24
- orthonormal, 63
- outer product, 24

- path, 4
- Principal Component Analysis, xiii
- Procrustes Problem
  - orientation preserving, 77, 197
  - orthogonal, 75, 188, 190
  - product space, 125
  - projection, 74
  - protractors, 29

- Pythagorean Theorem, 64

- range, 18
- rank, 18

- lower semi-continuity, 168
- Rayleigh quotient, 100, 127
- reduced SVD, 58, 143
- reverse triangle inequality, 21, 40, 13
- Riesz Representation Theorem, 79, 80
- rulers, 29

- self-adjoint, 99

- Separation of convex sets, 73

- sequences
  - Cauchy, 51
  - convergence, 51, 52
- minimizing, 53
Index

sequentially compact, 31, 57, 58, 46, 50

singular triples, 85, 124, 170
Singular Value Decomposition
for matrices, 143
Singular Value Decomposition, 85
Singular Value Decomposition, 125
by norm, 152
by Spectral Theorem, 159
reduced, 88
singular values, 170
by norm, 152
continuity, 165
Courant-Fischer-Weyl
characterization, 163
Frobenius norm, 161
in terms of eigenvalues, 159
Weyl's inequality, 164

singular vectors
left, 85
right, 85
Spectral Theorem, 99
for matrices, 108
rank one decomposition, 109
standard norm, 20
sum of subspaces, 15
SVD, 85, 125
reduced, 88
by norm, 152
by Spectral Theorem, 159
for matrices, 143
rank one decomposition, 146
reduced, 146

topology
normed vector space, 52
trace of a matrix, 19
transpose, xvi

Weyl's inequality, 118
for singular values, 164, 182, 187

zero mapping, 25