Index

Abel, Niels Henrik, 39
abelian extension of \mathbb{Q} is cyclotomic, 267
abelian group, 39
 all orders divide largest order, 192, 367
 conjugacy classes of, 453
 elliptic curve is, 460
 endomorphism ring, 87
 every subgroup normal, 129
 finite is product of cyclic groups, 354
 finitely generated is product of cyclic groups, 353
 has no inner automorphisms, 388, 395
 inversion is homomorphism, 58, 390
 is \mathbb{Z}-module, 328
 number of a given order, 368
 of fractional ideals of a number field, 466
 of order twelve, 396
 order of product of elements, 53, 192, 367
 order p^2 is abelian, 139
 representation of, 453
 simple iff prime order, 380
 structure theorem, 52, 353, 392, 485
action
 conjugation, 138
 group, 133
 transitive, 136, 152
addition, 63
additive group, 41
additive polynomial, 494
adjugate, 411
Adleman, Leonard, 499
affine algebraic set, 470
 ideal of, 471, 514
of an ideal, 471
affine line, 470
affine linear group, 396
affine plane, 470
affine space, 470
 projective space \mathbb{P}^n covered by $n + 1$
 copies of \mathbb{A}^n, 514
affine variety, 470, 471
 affine algebraic set is union of, 471
 coordinate ring of, 471
 field of rational functions of, 471
algebra
 commutative, 426
 elements integral over a subring, 433
 extension of scalars, 509
 finite over a ring, 432
 finitely generated, 362, 432
 Hilbert Basis Theorem, 432
 integrality criterion, 433
 of finite type over a ring, 432
 over a ring, 431
 sum and product of integral elements are integral, 433
algebraic closure, 227, 286
 of \mathbb{F}_p, 227, 290
 of \mathbb{Q}, 227
algebraic extension, 221, 223
 of infinite degree, 286
algebraic geometry, 470
 Bezout’s Theorem, 476
 Nullstellensatz, 471, 514
algebraic number, 187
 approximated by rational number, 215
algebraic number \((continued)\)

- iff \(\dim F[\alpha]\) finite, 224
- iff \(F[\alpha] = F(\alpha)\), 188, 222, 224
- minimal polynomial, 225
- set of is a field, 224

algebraic number theory, 464

fundamental exact sequence, 514

algebraic set

- affine, 470
- projective, 474
- union of varieties, 471

algebraic variety, 471

coordinate ring of, 471

field of rational functions of, 471, 514

algebraically closed field, 124, 226, 286, 290, 355

\(\mathbb{C}\) is, 226, 251

- iff polynomials split completely, 226, 286, 308
- linear operator has eigenvector in, 308, 451

Alice, 496

alternating form

- bilinear, 362
- \(D^B\) is an \(R\)-basis, 403
- expansion as a sum, 323, 402
- map induced by endomorphism, 401, 410
- map induced by linear operator, 312, 323
- on \(R^n\) has rank one, 401, 410
- sign change formula, 400
- space of has dimension one, 323
- swap variables changes sign, 312, 323
- top non-trivial space has rank one, 401, 410

alternating group, 379, 400

- has index 2 in \(S_n\), 379
- is normal subgroup of \(S_n\), 379
- of order twelve, 396
- simple for \(n \geq 5\), 381

alternating property, 311

\(A^n\), see affine space

angle bisector, 209

angle trisection problem, 208

annihilator ideal, 349, 365, 366

antisymmetry property, 29, 418

arrow in a category, 436

Artin’s conjecture, 193

Artin, Emil, 193

Artinian ring, 363

associative axiom, 133, 436

associative law, 39

as commutative diagram, 430

module, 327

ring, 64

vector space, 93

\(au + bv = \gcd\) theorem, 18, 364

Euclidean algorithm, 32

Aut, see automorphism group

automorphism

- conjugation, 388
- in a category, 436
- inner, 154, 388
- linear independence of field, 282
- of polynomial ring, 230
- outer, 154, 388

automorphism group, 154

- homomorphism from group to, 389
- in a category, 437
- of a group, 388
- of a module, 490
- of cyclic group, 389, 396
- of symmetric group, 389
- of \(\mathbb{Z}^n\), 395
- vector space, 296

axiom

- field, 105
- group, 39
- module, 327
- ring, 63
- vector space, 93
- what is an, 1, 2

Axiom of Choice, 227, 319, 336, 414, 417, 418

existence of maximal ideal, 79, 506

existence of vector space basis, 98, 318, 421, 506

Babai’s Closest Vector Algorithm, 481, 499, 500

Babylonia, 221

babystep-giantstep method, 520

ball, formula for volume, 517

base, group over a, 441

basis, 95

- all have same size, 98, 334, 336
- change of for free module, 359, 361
- finite, 95
- for direct product, 325
- for direct sum, 325
- fundamental domain associated to, 478
- iff \(\delta(v_1, \ldots, v_n) \neq 0\), 312
- iff spans and linearly independent, 96, 318, 332
basis (continued)
 infinite, 98
 not every module has a, 332, 333, 359
 of polynomial ring, 325
 standard, 95
Bezout’s Theorem, 211, 476
bijective, 12
 iff invertible, 13
bijective function, 36
bilinear form
 alternating, 362
 module of, 361, 362
 symmetric, 361, 362
bilinear map, 424
 module of, 361
binary relation, 29
 antisymmetric, 29
 reflexive, 29
 symmetric, 29
 transitive, 29
Binet’s formula, 370
binomial coefficient, 23
 \(\binom{n}{k} \) divisible by \(p \), 33
 \(\binom{p}{k} \) divisible by \(p \), 24
 \(\binom{p^n}{m} \) not divisible by \(p \), 142
binomial theorem, 24, 76
bisect angle, 209
block Jordan matrix, 355
Bob, 496
Burnside’s theorem on groups of order \(p^i q^j \), 381
\(\mathbb{C} \), see field of complex numbers
calculus, 94
 fundamental theorem, 95
cancellation property, 70
canonical isomorphism, 405
Cantor’s diagonalization method, 415
Cantor, Georg, 187
Cardano’s formula, 105, 269
cardinality, 415, 506
 equal, 415
 strictly smaller, 415, 506
 unequal, 415, 506
category, 435, 436
 arrow, 436
 associative axiom, 436
 automorphism in a, 436
 composition map, 436
 fiber product, 439, 509
 functor, 437
group in a, 441
 group of automorphisms, 437
 homomorphism functor, 438, 509, 510
 identity axiom, 436
 inverse of a morphism, 436, 509
 isomorphism in a, 436, 509
 map, 436
 morphism, 436
 object, 436
 small, 436
 subcategory, 437
 tensor product functor, 510
Cayley graph, 446
 connected iff set generates group, 447
 of a group, 446
 of dihedral group, 446, 510
 of quaternion group, 510
Cayley’s Theorem, 379, 394
Cayley–Hamilton Theorem, 292, 368
center
 of a group, 60, 138
 of a group ring, 494, 518
 of a ring, 83
 of \(p \)-group is non-trivial, 138
 permutation group has trivial, 393
 central element in group ring, 494, 518
 centralizer of a subgroup, 60, 140, 388
 chain, 419
 descending, 363
 maximal element, 419
 of modules, 426
 of submodules stabilizes, 337
 upper bound, 419
 chain rule, 196
 change of basis, 359, 361
 elementary operation, 348
 formula, 303, 322
 change of generating set, 361
 character
 1-dimensional, 294
 group of, 455
 inner product equals multiplicity, 456
 inner product of, 455
 irreducible, 453
 is invariant under conjugation, 454
 is sum of roots of unity, 454, 511
 linear independence of, 294
 not a homomorphism, 454
 of a representation, 453
 of direct sum is sum, 454
 of regular representation, 455
Index

character (continued)
- orthogonality relation, 456
- table, 454
- value at e is rank, 455
- value at power, 511
character group, 455
- inner product equals multiplicity, 456
- inner product on, 455
character table, 454
- of dihedral group, 454
- of quaternion group, 511
characteristic
- of a ring, 75
- of finite field, 117
- zero, 75
characteristic polynomial, 315, 316
- Cayley–Hamilton Theorem, 368
- is unique, 323
- of inverse operator, 324
- roots are eigenvalues, 316
- trace is next-to-top coefficient, 324
characteristic value, see eigenvalue
characteristic zero field extension always separable, 238, 239, 242, 287
char, see characteristic of a ring/field
Chebotarev density theorem, 204
Chebyshev polynomial, 220
China, 221
Chinese Remainder Theorem, 52, 168, 169, 183, 351, 353
- application to Euler phi function, 171
- history, 168
circle, 207
- squaring the, 208
class field theory, 267
class number, 466
- of quadratic extension, 467
classification theorem for finite simple groups, 387
closest vector problem, 481, 499
- Babai’s Algorithm, 481, 499, 500
- Gaussian heuristic, 517
- has a solution, 515
- to find NTRU plaintext, 521
closure
- algebraic, 227
- integral, 433
C_n, see cyclic group
coefficient, leading, 341, 362
Cohen, Paul, 504
column and row reduction, 343, 365
column rank, 363
column span, 363
- has same dimension as row span, 363
combination, 23
combinatorial symbol, 23
combinatorics, 21
commutative algebra, 426
commutative diagram, 429
- associative law as a, 430
- Five Lemma, 430, 508
- proof by diagram chase, 430
- tensor product, 423
commutative group, 39
commutative law, 39
- ring, 64
commutative ring, 64
- module over a, 327
commutative square, 430
commutative diagram, 174
comparability property, 418
compass and ruler construction, 207
complement, 11
- of intersection, 27
- of union, 27
complete bipartite graph, 444, 510
complete graph, 444, 510
complex embedding, 468
- conjugate of, 468
complex number, square root of, 252, 289
component of a graph, 445, 505
composition, 12
composition map, 436
composition quotients do not determine group uniquely, 387, 395
composition series, 386
dihedral group, 395
does not determine group uniquely, 387, 395
for group of prime power order, 395
groups with more than one, 386
Jordan–Hölder Theorem, 386, 395
length, 386
quaternion group, 395
quotients, 386
symmetric group, 395
compositum, 291
Galois group of, 291
congruence, 66
- linear, 21
congruent, 20, 73
conic in \mathbb{P}^2, 474

conjunctive class
 abelian group, 453
 dihedral group, 453
 number of equals number of irreducible representations, 453
conjunctive complex embedding, 468
conjunctive of matrix, 303
conjunctive subgroup, 289
 is isomorphic to original subgroup, 130
 is subgroup, 130
conjunctive action, 138
conjunctive automorphism, 388
conjunctive, 4
 distributes over disjunction, 6
connected component,
 graph is disjoint union of, 445
 of a graph, 445, 505
connected graph, 445
constructibility versus solubility, 271
constructible number, 210, 271
 17th-root of unity is, 293
 is algebraic, 211
constructible point, 210, 271
continuous hypothesis, 504
contradiction, proof by, 4, 27
contravariant functor, 437
 Hom, 509
convex open set, 486
coordinate, 95
coordinate ring of affine variety, 471
corps, 108
coset, 48, 73, 127
 all have same size, 49
 double, 148
 equal or disjoint, 49
 equals gH iff g is in coset, 60, 127
 multiplication algorithm, 128
countable set, 413, 414
 product of is countable, 504
 \mathbb{Q} is, 504
covariant functor, 437
 Hom, 438
cryptography, 496
 contradictory goals, 499
 Diffie–Hellman problem, 499, 520
 efficiency versus security, 499
 Elgamal, 500, 520
 GGH, 500, 503
 hard problems used for, 498
 lattice-based, 500, 501, 520
 NTRU, 520
 pseudo-random number, 503
 public key, 497
 random number, 503
 RSA, 499, 504
 trapdoor function, 497
 true random number, 503
cubic doubling problem, 208
cubic formula, 105, 269
curve in \mathbb{P}^2, 474
CVP, see closest vector problem
cycle, 373
 and transposition generate S_n, 278, 394
 disjoint, 372
 disjoint cycles commute, 373, 393
 length of, 372
 number of cycles in a power of, 393
 of a permutation, 372
 permutation is product of disjoint, 374
 sign of, 379
 sign of product of, 379
 transposition, 375
cyclic Galois group, 283
cyclic graph, 444, 510
cyclic group, 41
 automorphism group of, 389, 396
 finite abelian group is product of, 354, 392
 finitely generated abelian group is product of, 353
 generator, 41, 47, 55
 group ring of, 493, 519
 of prime order, 50
 product of, 367
 representation of, 449, 453
 semidirect product of, 392, 396
 simple iff prime order, 380
cyclic module, 333
cyclic submodule, 331, 358
 is cyclic group if $R = \mathbb{Z}$, 331
cyclotomic field, 264
 contains quadratic extensions, 292
 Galois group, 265, 513
 Galois theory, 264
 ring of integers, 464
cyclotomic polynomial, 206, 218, 267, 293
 is separable, 265
Dalek, 8
definition, what is a, 1
degree
 multiplication rule, 109, 222, 225, 238, 247
degree (continued)
of a homogeneous polynomial, 473
of a hypersurface, 474, 476
of a polynomial, 84, 110
of extension field, 109
of extension field is one, 122
of extension field is prime, 122
of field generated by root of irreducible
polynomial, 115, 189, 222
of minimal polynomial, 226
of polynomial bounds number of roots,
190
of product of polynomials, 110, 122
of splitting field, 194, 223
of zero polynomial, 110
dehomogenization, 476
Deligne, Pierre, 464
derivative
equal to zero, 196
formal, 83, 196
implicit formal, 462
descending chain of ideals, 363
determinant, 309, 315, 405
definition of, 313
definition via action on $\mathfrak{A}_n(M)$, 405
expansion as a sum, 323, 402, 406
is a unit iff endomorphism is invertible,
406
is multiplicative, 314
multiplication formula, 405
non-zero iff linear operator is invertible,
314
DHP, see Diffie–Hellman problem
diagonal matrix, 307
eigenvalues, 322
eigenvectors, 322
Smith normal form, 343
diagonalizable, 307, 354
commuting operators, 322
if $\dim(V)$ distinct eigenvalues, 322
diagram chase, 430
diagram, commutative, 174
difference, 11
differentiation is linear transformation, 94
Diffie, Whitfield, 499
Diffie–Hellman problem, 499
can be used to break Elgamal, 520
dihedral group, 43, 44
Cayley graph, 446, 510
character table, 454
composition series, 395
conjugacy classes of, 453
D_4, 38
Galios group, 234, 244, 248, 287, 288
generalization to $C_n \times C_m$, 396
is semidirect product, 392
normal subgroup, 130
(not) isomorphic to symmetric group, 58
of order twelve, 396
representation of, 449, 453, 510
dimension
infinite, 318
of a representation, 448
of a representation is value at e, 455
of Jordan block, 355
of module, 334, 336
of vector space, 98
Rank-Nullity Theorem, 304, 429
dimension formula for representations, 456
Diophantine approximation, 215
direct product
basis for, 325
of groups, 389
of infinitely many modules, 332, 359
of infinitely many vector spaces, 319,
325
tensor product distributes over, 507
direct sum
basis for, 325
of a representation, 450
of infinitely many modules, 332, 359
of infinitely many vector spaces, 320,
325
directed graph, 444
commutative diagram is, 429
Dirichlet Unit Theorem, 469
discrete logarithm problem, 498
babystep-giantstep method, 520
discrete subgroup, 477
is finitely generated free abelian group,
478, 516
of maximal rank, 478
rank at most rank of vector space, 516
discriminant
of a lattice, 478, 486, 516
polynomial, 179, 376, 393
disjoint cycles, 372
commute, 373, 393
disjoint union, 14
gives equivalence relation, 15, 374
disjunction, 4
distributes over conjunction, 6
distributive law
 for and/or, 6
 for negation, 6
module, 327
ring, 64
vector space, 93
divisibility, 17, 158
 and congruences, 20
 equivalent to ideal inclusion, 158
division ring, 108
division with remainder, 18, 31, 88, 111, 159
DLP, see discrete logarithm problem
D_n, see dihedral group
domain, 12, see also integral domain
divisibility, 158
Euclidean, 159
field of fractions, 172, 434
principal ideal, 159
unique factorization, 158
unique factorization is integrally closed, 434
double-and-add algorithm, 502, 522
double coset, 148
equivalence relation, 148
double negation, 5
doubling cube problem, 208
e is transcendental, 187
ECDLP, see elliptic curve discrete logarithm problem
domain, 443
Egypt, 221
eigenvalue, 306, 315
 at most $\dim(V)$ distinct, 316, 322
diagonal matrix, 322
 distinct have linearly independent eigenvectors, 322
equal to zero, 306, 308
 is root of characteristic polynomial, 316
 of finite-order linear operator is root of unity, 324
 of inverse operator, 324
 of Jordan block, 355
 permutation matrix, 394
 sum is trace, 324
eigenvector, 306
 basis of, 307, 322, 354
diagonal matrix, 322
 exists over algebraically closed field, 308, 451
 is a non-zero vector, 306
 linearly independent if distinct eigenvalues, 322
 Eisenstein irreducibility criterion, 200, 205, 267, 279
element of a set, 9
elementary change-of-basis operation, 348
elementary divisor, 346
elementary matrix operation, 343, 365
 reduce to Smith normal form, 344, 365
 elementary symmetric polynomial, 178, 185, 246, 275, 468
 of roots gives coefficient, 178, 246
Elgamal cryptosystem, 500
 Diffie–Hellman problem will break, 520
Elgamal, Taher, 500
Elkies, Noam, 463
elliptic curve, 457, 459, 498
 associative law is hard to prove, 461
 computing large multiples, 502, 522
 defined over finite field, 463
 defined over \mathbb{Q}, 462
 discrete logarithm problem, 498
 group law, 458, 460
 group of \mathbb{Q}-rational points, 462
 Hasse’s Theorem, 464, 513
 intersection with a line, 458
 intersection with tangent line, 458
 intersection with vertical line, 459
 Mazur’s Theorem, 463
 Mordell–Weil Theorem, 462
 multiplication by n map, 461
 number of points defined over a finite field, 464, 513
 \mathcal{O}, 459
 of rank at least 28, 463
 point at infinity, 459
 points form an abelian group using \oplus, 460
 rank is unbounded?, 463
 rank is uniformly bounded?, 463
 rank of group of rational points, 463
 reflection map, 459
 tangent line, 458
 torsion subgroup, 463
 uniform bound for torsion subgroup, 463
 elliptic discrete logarithm problem, 498
 empty set, 10
 is subset of every set, 10
 maps to every set, 420
End, see endomorphism ring
endomorphism
 adjugate, 411
endomorphism (continued)
 induced map on multilinear form, 401, 410
 induced map on multilinear map, 409
 invertible iff determinant is unit, 406
endomorphism ring, 87
 commutative iff dimension one, 320
 dimension of, 299, 321
 isomorphic to ring of matrices, 336, 360
 of a module, 334, 360, 397, 490
 of a vector space, 101, 296, 320
 of rank one module, 405
 rank of, 336, 360
 units, 490
epimorphism, see surjective
equal cardinality, 415
equivalence class, 15
equal or disjoint, 15, 374
equivalence relation, 13, 14, 29
 breaks set into disjoint union, 15, 374
 congruence is a, 20
 connected components of a graph, 445
 double coset, 148
 equivalence class, 15
 reflexive property, 14
 symmetry property, 14
 transitive property, 14
Euclid, 1, 19, 32
Euclidean algorithm, 18, 31, 167, 198, 498, 520, 521
 \(au + bv = \gcd \) theorem, 32
Euclidean domain, 159
every element is product of irreducibles,
 165
 \(F[x] \) is a, 161
 is a PID, 160
 is Noetherian, 338
 matrix with entries in, 342, 344
 size function, 159, 344
 structure theorem for finitely generated
 module, 346, 350
 torsion submodule trivial iff module is
 free, 366
 \(\mathbb{Z} \) is a, 161
 \(\mathbb{Z}[i] \) is a, 161
Euclidean geometry, 472
Euclidean lattice, 477
Euler characteristic, 508
Euler phi function, 171, 183, 499
Euler’s criterion, 216
Euler, Leonhard, 27
evaluation homomorphism, 67, 81, 82, 90,
 94, 226, 357, 362, 432
 image of, 187
Eve, 496
even function, 360
even permutation, 378, 400
exact functor, 443
exact sequence, 359, 366, 426
 additivity of rank in, 429
 annihilator ideals of, 366
 Euler characteristic, 508
 exact functor, 443
 finite generation of modules in, 359, 429,
 508
 Five Lemma, 430, 508
 free modules in, 429, 508
 ideal class group in, 514
 left-exact functor, 443, 508
 long, 508
 of torsion submodules, 508
 right-exact functor, 443
 torsion submodules of, 366
 unit group in, 514
exclusive disjunction, 4
exclusive or, 4
exists, see there exists
extension field, 108
 algebraic of infinite degree, 286
 degree, 109, 122
 extension of isomorphism of, 230
 finite, 109
 finite implies algebraic, 224
 Galois, 235
 infinite, 109
 Primitive Element Theorem, 239
extension of scalars, 507, 509
factorial, 22
 \(0! = 1, 23 \)
 power of \(p \) dividing, 33
 \(F[\alpha] = F(\alpha) \) iff \(\alpha \) is algebraic, 188, 222,
 224
 Fermat's Last Theorem, 280
 Fermat's Little Theorem, 24, 61, 85
fiber product, 439
 of sets, 509
 of sets is intersection, 509
 universal mapping property, 439, 509
Fibonacci sequence, 30, 369, 370
field, 69, 92, 105
 algebraic number, 187
 algebraic of infinite degree, 286
field (continued)
 algebraically closed, 124, 226, 286, 308, 355
 algebraic closure of, 227, 286
 degree multiplication rule for extensions, 109, 222, 225, 238, 247
 degree of extension, 109, 122
 extension, 108
 extension generated by $\alpha_1, \ldots, \alpha_n$, 108
 extension viewed as vector space, 109
 finite, 69, 70, 92, 107, 117, 119, 200, 233, 254
 finite subgroup of multiplicative group is cyclic, 192, 265, 468
 fixed, 243
 generated by root of irreducible polynomial, 115, 189, 222
 generated by roots, 270
 homomorphism is injective, 106
 iff quotient by maximal ideal, 78
 inseparable extension, 200, 238, 239, 290
 is a domain, 83
 matrix with entries in, 343
 number field, 464
 of algebraic numbers, 224
 of complex numbers, 92, 107
 of complex numbers is algebraically closed, 226, 251
 of fractions of, 172, 434
 of rational functions, 175, 176, 275, 276, 287
 of affine variety, 471
 of projective space, 473
 of projective variety, 514
 of rational numbers, 92, 107
 of real numbers, 92, 107
 of symmetric rational functions, 275, 276
 $\mathbb{Q}(\sqrt{2})$, 107, 109
 $\mathbb{Q}(i)$, 107, 109
 quotient by irreducible element is, 164
 quotient by irreducible polynomial is, 113, 222
 radical extension, 270
 skew, 108
 splitting, 124, 194, 223
 splitting in characteristic zero, 238, 287
 subfield, 108
 transcendental number, 187
 field automorphism, linear independence of, 282

field extension
 algebraic, 221, 223
 always separable in characteristic zero, 238, 239, 242, 287
 compositum of, 291
 conjugate subfields, 289
 cyclotomic, 264
 extension of isomorphism of, 230
 finite implies algebraic, 224
 Galois, 235, 242
 Galois group of, 228
 Galois group of intermediate field, 243
 generated by finitely many elements, 122, 239
 intermediate, 243
 Kummer, 264, 267, 268, 392
 norm, 291
 normal, 258
 Primitive Element Theorem, 239
 radical, 270
 separable, 239, 287
 trace, 291
 with cyclic Galois group, 283

field of fractions, 172, 434
 generalized, 184

field of rational numbers
 algebraic closure of, 227
 Fields Medal, 215
 finite abelian group
 is product of cyclic groups, 392
 structure theorem, 52
 finite algebra over a ring, 432
 finite basis, 95
 finite degree field extension, 109
 is algebraic, 224
 finite field, 69, 70, 92, 107, 117
 algebraic closure of, 227, 290
 characteristic, 117
 contains \mathbb{F}_p, 117
 elliptic curve defined over, 463
 exists for all prime powers, 119, 200, 254
 Galois theory of, 254, 255
 irreducible element in polynomial ring, 118
 isomorphic if same order, 119, 200, 233, 254
 multiplicative group is cyclic, 192, 468
 order is prime power, 117
 primitive root, 193
 product of non-zero elements, 121
 squares in, 216
Index

finite group
 abelian is product of cyclic groups, 354
 classification of simple, 387
 sporadic simple, 387
finite set, 10, 414
 map is injective iff surjective if same size,
 13, 29
finite type, 432
finite-dimensional vector space
 left-inverse iff right-inverse, 322
 linear operator injective iff surjective, 305
finitely generated abelian group
 of points on an elliptic curve, 462
 structure theorem, 353, 485
 unit group of a number field is, 469
finitely generated algebra, 362, 432
 Hilbert Basis Theorem, 432
 over Noetherian ring is Noetherian, 432
finitely generated free module
 bases all have same size, 334
 rank of, 334, 336
 right-inverse equals left-inverse, 490
finitely generated ideal, 337
finitely generated module, 332, 333, 359, 429, 508
 algebra that is a, 432
 change of generating set, 361
 free of n-tuples, 333
 multilinear map of, 398, 409
 rank of, 346
 structure theorem, 346, 350, 463
first-order logic, 419
Five Lemma, 430, 508
fixed field, 243
 Galois group of, 245, 247
 of Galois group is base field, 258
 of Galois group is intermediate field, 245, 247
floor, 33
F-module, see module over field
F^n, see vector space of n-tuples
for all, 7
forgetful functor, 438, 507
form
 alternating, 399
 multilinear, 398
 symmetric, 399
 symmetrization of, 410
formal derivative, 83, 196
 equal to zero, 196
 implicit, 462
 rules for, 196
fizzle, 9
F_p, see finite field
fractional ideal, 466
 group of, 466
 principal, 466
free module, 332, 333, 429, 508
 bases all have same size, 334
 change of basis, 359, 361
 determinant, 405
 finitely generated of n-tuples, 333
 iff torsion submodule is trivial, 366
 multilinear map of, 398, 409
 rank additive in exact sequence, 429
 rank of, 334, 336
Frey, Gerhard, 280
Frobenius homomorphism, 76, 255, 496
Frost, Robert, 429
function, 12
 bijective, 12, 36
 bijective iff invertible, 13
 composition of, 12
 composition of in a category, 436
 domain, 12
 even, 360
 formal definition, 12
 injective, 12, 414
 injective iff surjective for finite equal size
 sets, 13, 29, 53
 invertible, 13
 invertible iff bijective, 13
 odd, 360
 one-way, 503
 range, 12
 set of from S to T, 415
 surjective, 12, 414
 trapdoor, 497
functor, 437
 contravariant, 437
 covariant, 437
 exact, 443
 forgetful, 438, 507
 Hom, see homomorphism functor
 homomorphism, 438, 509, 510
 left-exact, 443, 508
 on the category of modules, 442
 right-exact, 443
 tensor product, 442, 443, 510
fundamental domain, 478
 sum of lattice vector and vector in, 479, 515
fundamental domain (continued)
 volume of, 478, 486, 516
 Voronoi cell, 486, 487
 weak, 486
Fundamental Theorem of Algebra, 250, 251
Fundamental Theorem of Arithmetic, 157
Fundamental Theorem of Galois Theory, 247
F-vector space, 93
$F[x]$-module, 329, 355

Galois extension, 235, 242
 abelian of \mathbb{Q}, 267
 radical extension contained in, 270
Galois group, 228
 as permutation group, 242
 cyclic, 283
 cyclotomic field, 265, 513
 dihedral group, 234, 244, 248, 287, 288
 fixed field of conjugate of subgroup, 289
 fixed field of subgroup, 243
 is a group, 228
 Kummer field, 268
 linear independence of field automorphisms, 282
 of compositum, 291
 of conjugate of intermediate field, 289
 of fixed field is subgroup, 245, 247
 of intermediate field, 243
 of splitting field, 235
 of $X^4 - 2$, 233, 244, 248, 287, 288
 order equals degree of K/F, 235
 permutes roots of polynomial, 228
 radical extension has solvable, 273
 semidirect product, 268, 292, 392
 solvable iff polynomial solvable by radicals, 274, 294
 trivial, 229, 286

Galois theory, 221
 cyclotomic field, 264
 $H = G(K/K^H)$, 245, 247
 equivalent formulations, 257, 258
 finite field, 254, 255
 Fundamental Theorem of, 247
 $H = G(K/K^H)$, 245, 247
 inclusion reversing correspondence, 247
 Kummer field, 268, 292
 normal subgroup iff Galois, 247, 262
 gamma function, 480, 517
 Gauss’s Lemma, 202, 467
 Gauss, Carl, 20, 193
 Gaussian heuristic, 517, 522
Gaussian integers, 66
 are a Euclidean domain, 161
 are a PID, 161
 are a UFD, 165
 unit group, 70
gcd, see greatest common divisor
general linear group, 42, 56, 57, 296, 448
generating set
 of a group, 59, 446
 of a group iff Cayley graph connected, 447
 of an ideal, 73, 517
generator of cyclic group, 41, 47, 55
GGH cryptosystem, 500, 503
$g^{-1}Hg$, see conjugate subgroup
GL$_n$, see general linear group
Goldbach’s Conjecture, 27
Goldbach, Christian, 27
Goldreich, Oded, 500
Goldwasser, Shafi, 500
graph, 443
 commutative diagram is directed, 429
 complete, 444, 510
 complete bipartite, 444, 510
 connected, 445
 connected component, 445, 505
 cyclic, 444, 510
 directed, 444
 disjoint union of connected components, 445
 isomorphism, 446
 isomorphism problem, 446
 morphism, 446
 path, 444, 510
 path in a, 445
 set of edges, 443
 set of vertices, 443
 subgraph of, 446
 undirected, 444
greatest common divisor, 18
 equals $au + bv$, 18, 364
 equal to one, 18
 Euclidean algorithm, 31
 in polynomial ring, 288
 in principal ideal domain, 364
Greece, 221
group, 39
 abelian, 39
 additive, 41
 affine linear, 396
 automorphism, 154
 automorphism group of a, 388
Index

group (continued)

- axioms, 39
- Cayley graph, 446
- center, 60, 138
- centralizer of a subgroup, 60, 140, 388
- character, 294
- character group of, 455
- classification of finite simple, 387
- commutative, 39
- composition quotient, 386
- composition series, 386, 395
- computing large powers, 502, 522
- conjugation action, 138
- coset, 48, 127
- cyclic, 41
- dihedral, 43, 44
- discrete logarithm problem, 498, 520
- double coset, 148
- elliptic curve, 458, 460
- elliptic discrete logarithm problem, 498
- equals semidirect product of subgroups, 391
- Galois, 228
- homomorphism from group to
 - automorphism group of normal subgroup, 388
- ideal class, 466
- in a category, 441
- index multiplication rule, 60
- infinite, 41
- inner automorphism, 388
- inversion is homomorphism iff abelian, 58, 390
- irreducible representation, 451
- isomorphism, 45
- Jordan–Hölder Theorem, 386, 395
- kernel of homomorphism, 47
- Lagrange’s Theorem, 50, 499
- Maschke’s Theorem, 452, 511
- matrix, 42
- maximal normal subgroup, 387, 395
- monster, 387
- multiplicative, 41
- normal subgroup, 129
- normalizer of a subgroup, 140, 145
- number of abelian groups of a given order, 368
- number of conjugacy classes equals
 - number of irreducible representations, 453
- number of conjugates of subgroup, 145
- of fractional ideals of a number field, 466
- of Lie type, 387
- of order p^2 is abelian, 139
- of order p^n, see Sylow subgroup
- of order p^n has non-trivial center, 138
- of order pq, 144, 395
- of order ten, 143
- of order twelve, 396
- of prime order is cyclic, 50
- of units of a number field, 467
- Orbit-Stabilizer Counting Theorem, 136
- order of, 40
- order of an element, 40
- order of element divides order of group, 50, 499
- outer automorphism, 388
- permutation, 371
- product of, 51, 389
- product of subgroups, 147
- quaternion, 43
- quotient by normal subgroup, 132
- quotient map, 132
- regular representation, 449
- representation of, 448
- ring of invariants for action by, 180
- Schur’s Lemma, 451
- semidirect product, 268, 292, 389, 390
- simple, 129, 380
- simple abelian, 380
- simple of prime power order is cyclic, 380
- solvable, 272, 381, 387
- sporadic finite simple, 387
- subgroup generated by element, 47
- subgroup generated by subset, 59, 394, 446
- subgroup of a, 46
- subgroup of index two is normal, 151
- subset generates iff Cayley graph connected, 447
- Sylow subgroup, 142
- Sylow’s Theorem, 140, 253, 278
- symmetric, 42
- transitive action, 136, 152
- trivial, 47
- group action, 133
- orbit, 134
- permutation representation, 449
- stabilizer, 134
- group homomorphism, 44
- kernel is normal subgroup, 130
- group of units, see unit group
group representation, see representation
group ring, 493
 abelian iff group is abelian, 493, 519
central element associated to normal subgroup, 494, 518
idempotent associated to subgroup, 494, 518
left ideal is invariant subspace, 494, 518
multiplication formula, 493
of cyclic group, 493, 519
regular representation of group, 494, 518
\(G \times x \), see orbit
\(G_x \), see stabilizer

\(\mathbb{H} \), see quaternion ring
Hadamard’s inequality, 480
Halevi, Shai, 500
Hamilton, William, 67
Hasse’s Theorem, 464, 513
Hasse, Helmut, 464
Helleougarch, Yves, 280
Hellman, Martin, 499
Hermite’s constant, 479
 upper bound for, 480
Hermite, Charles, 187
Hermite–Minkowski Theorem, 479, 488, 516
higher-order logic, 416
Hilbert Basis Theorem, 340, 432, 471
Hilbert Finiteness Theorem, 180
Hilbert Irreducibility Theorem, 277
Hilbert Theorem “90”, 283
Hom, see homomorphism space
Hom functor, see homomorphism functor
homogeneous coordinates, 472
homogeneous ideal of projective algebraic set, 474
homogeneous polynomial, 186, 473
homomorphism
 Frobenius, 76, 255, 496
group, 44
group has normal kernel, 130
 inclusion, 52
kernel is ideal, 75, 518
kernel is submodule, 330, 358
logarithm, 45
matrix associated to, 335
matrix of composition, 336, 360
module, 328
 of a representation, 450
of fields is injective, 106
of polynomial ring, 82
projection, 52
ring, 65
 ring from \(\mathbb{Z} \), 68
to quotient group, 132
to quotient module, 330, 358
to quotient ring, 75, 518
vector space, 93, 295
homomorphism functor, 438, 509, 510
covariant, 438
is left-exact, 443
on modules is left-exact, 510
on the category of modules, 442, 443, 510
homomorphism space
 dimension of, 299, 321
isomorphic to space of matrices, 299, 335, 360
 of a module, 334, 397
 rank of, 336, 360
 vector space, 101, 295, 320
hyperplane, 474
 boundary of Voronoi cell, 487
hypersurface, 475
 degree of, 474, 476
 multiplicity at intersection of, 476
 transversal intersection, 476, 477
ideal, 72
affine algebraic set associated to, 471
annihilator, 349, 365, 366
congruence, 73
coset of an, 73
descending chain, 363
finitely generated, 337
generated by a set, 73, 517
generated by irreducible element is maximal, 164
generated by irreducible element is prime, 164
generated by irreducible polynomial is maximal, 113, 222
generators for, 73, 517
in polynomial ring is principal, 112, 222
is \(R \)-module, 329, 358, 359
kernel is a two-sided, 518
kernel is an, 75
left, 489
maximal, 77
of affine algebraic set, 471, 514
of projective algebraic set, 474
prime, 77
principal, 73, 112, 159
ideal (continued)
 product of, 88
radical of, 88, 471
right, 489
sum of, 88
two-sided, 489
unique factorization a product of prime
 ideals, 465
unit, 73
zero, 73
ideal class group, 465, 466
 class number, 466
 in exact sequence with unit group, 514
 is finite, 466
 of quadratic extension, 467
idempotent, 84, 86, 494, 518
 element, 518
 in group ring, 494, 518
identity axiom, 39, 133, 436
identity law
 module, 327
 vector space, 93
identity permutation, 36
if and only if, 5
iff, see if and only if
IFP, see integer factorization problem
image
 is finitely generated free module, 366
 is vector subspace, 322
 of linear transformation, 304
 rank of, 366
implication, 4
implicit differentiation, 461, 462
inclusion reversing correspondence, 247
inclusion/exclusion principle, 25, 26, 120
 for three sets, 25
 for two sets, 25
index, 50
 multiplication rule, 60
India, 221
induction, 16
 proof that all horses have the same color, 30
 proof using well-ordering principle, 16
infinite degree field extension, 109
 algebraic, 286
infinite set, 414
 countable, 414
 uncountable, 414
infinite-dimensional vector space, 98, 318
 linear operator injective and not surjective, 319, 325
 linear operator surjective and not injective, 319, 325
 one-sided inverse, 319, 325
 shift operator, 319, 325
infinitely many variables, 185, 338
injective, 12, 414
 iff surjective, 53
 iff surjective for finite same size sets, 13, 29
inner automorphism, 154, 388
 abelian group has no, 388, 395
 quaternion group, 396
inner product
 equals multiplicity, 456
 of characters, 455
inseparable, 197, 223
 field extension, 200, 238, 239, 290
 irreducible polynomial that is, 200, 238, 290
insolubility by radicals, 271
 generally if degree \(\geq 5 \), 277
 iff Galois group not solvable, 274, 294
insolubility versus non-constructibility, 271
integer factorization problem, 498
integers, 41
 \(au + bv = \text{gcd} \) theorem, 18
 congruence, 20, 66
 divisibility, 17
 division with remainder, 18, 31
 greatest common divisor, 18
 modulo \(m \), 21, 41
 prime, 19
 prime divides product, 19
 relatively prime, 18
 ring of, 17, 63
 square-free, 198
integers modulo \(m \), 21, 41, 65
 unit group, 70
integral closure, 433
 is a ring, 433
 number field, 464
integral domain, 69
 cancellation property, 70
 divisibility, 158
 Euclidean, 159
 field of fractions, 172, 434
 finite is a field, 83
 iff quotient by prime ideal, 78
integral domain (continued)
 principal ideal, 159
 unique factorization, 434
integral element
 criterion for, 433
 sum and product are integral, 433
integral extension
 of a field same as algebraic, 433
 of a ring, 433
integrality criterion, 433
integally closed ring, 434
 UFD is, 434
integration is linear transformation, 95
intermediate field, 243
 fixed field of Galois group is, 245, 247
 Galois group of, 243
 Galois group of conjugate, 289
 Galois of normal subgroup, 247, 262
 of \(X^4 - 2, 248, 287, 288\)
Intermediate Value Theorem, 250
intersection, 10
 Bezout’s Theorem, 476
 complement of, 27
 multiplicity of, 476
 of infinitely many sets, 28
 of subsets is fiber product, 509
 transversal, 476, 477
intersection of lines in \(\mathbb{P}^2\), 474
intersection theory, 474
invariant subspace, 450
 is left ideal of group ring, 494, 518
 projection map to, 511
 trivial, 451
inverse
 axiom, 39
 left, 489
 of morphism in a category, 436, 509
 right, 489
 two-sided, 489
invertible, 13
 iff 0 not eigenvalue, 308
 iff bijective, 13
 iff determinant is unit, 406
 linear operator, 296
irreducible element, 158
 divides product, 165
 generates maximal ideal, 164
 generates prime ideal, 164
 in a ring, 158
irreducible polynomial, 113, 222
 degree of field generated by root, 115, 189, 222
 Eisenstein irreducibility criterion, 205
 example of inseparable, 200, 238, 290
 generates maximal ideal, 113, 222
 minimal polynomial is, 226
 over finite field, 118
 product over all, 120
 separable if characteristic zero, 199, 223, 239
 separable if derivative is non-zero, 199, 223
irreducible representation, 451
 abelian group, 453
 finitely many, 453
 Maschke’s Theorem, 452, 511
 multiplicity in regular representation, 452, 456
 multiplicity of, 452
 Schur’s Lemma, 451
 sum of dimensions, 453
isomorphism, see also bijective
 canonical, 405
 extension of field, 230
 group, 45
 in a category, 436, 509
 of a representation, 450
 of graphs, 446
 ring, 65
joke, math fruit, 39, 419
Jordan block, 355
 has only one eigenvalue, 368
 has only one eigenvector direction, 368
 is sum of diagonal plus nilpotent, 368
Jordan normal form, 354, 355, 368
 blocks are unique, 368
 theorem, 355
Jordan–Hölder Theorem, 386, 395

\(k\)-cycle, 372
kernel, 47, 65, 304, 328
 is a two-sided ideal, 518
 is a subgroup, 47
 is a submodule, 330, 358
 is an ideal, 75

\(\sqrt{n}\) is, 32
\(\sqrt{p}\) is, 20
irreducibility theorem of Hilbert, 277
irreducible character, 453
 orthogonality relation, 456
kernel (continued)
 is finitely generated free module, 366
 is normal subgroup, 130
 is subspace, 304
 is trivial iff map is injective, 47, 75, 304, 330, 358
 is vector subspace, 322
 linear transformation, 304, 328
 of a group homomorphism, 47
 of a ring homomorphism, 65
 of map to quotient module, 358
 of quotient map of groups, 132
 of quotient map of modules, 330
 of quotient map of rings, 74
 rank of, 366
 Rank-Nullity Theorem, 304, 429
 zero iff injective, 322
key, public/private, 497
Körper, 108
Kronecker’s theorem, 267
 for quadratic extensions, 292
Kummer extension, 267, 268, 392
Kummer field, 264, 267, 268, 392
 Galois group, 268
 Galois theory, 268, 392
Kummer homomorphism, 268

Lagrange’s Theorem, 50, 125, 136, 499
lattice, 478
 Babai’s Closest Vector Algorithm, 481, 499, 500
 bases related by $\text{SL}_n(\mathbb{Z})$, 516
 closest vector problem, 481, 499
 covolume, 478, 486, 516
 discriminant, 478, 486, 516
 Euclidean, 477
 fundamental domain, 478, 486
 Gaussian heuristic, 517, 522
 Hadamard’s inequality, 480
 has a short basis, 480
 has a short vector, 479, 488, 516
 Hermite’s constant, 479
 intersection with ball is finite, 515
 LLL reduction algorithm, 483
 Minkowski Theorem, 480
 NTRU, 521
 shortest vector problem, 481
 sum of vector in fundamental domain and vector in, 479, 515
 volume of fundamental domain, 478, 486, 516
 Voronoi cell, 486, 487
lattice reduction, 483
 LLL algorithm, 483
lattice-based cryptosystem, 500, 501, 520
 GGH, 500
 NTRU, 520
law of the excluded middle, 4, 27
leading coefficient, 341, 362
least common multiple, 53
left coset, see coset
left-exact functor, 443, 508
 homomorphism functor is, 443, 510
left ideal, 489
left principal ideal, 490
left-inverse, 87, 319, 322, 325, 489
 equals right-inverse, 86, 489, 490
 of morphism in a category, 436, 509
left-shift operator, 319, 322, 325
length of a cycle, 372
length of composition series, 386
Lenstra, Arjen, 483
Lenstra, Hendrik, 483
less than, 10
Lindemann, Ferdinand von, 187
line, 2, 207
 affine, 470
 in \mathbb{F}^2, 474
 intersect in projective plane, 474
 projective, 472
linear combination, 95
linear congruence, 21
linear form
 alternating, 311, 362, 399
 bilinear, 361
 multilinear, 311, 398
 symmetric, 361, 399
linear independence, 96, 318, 332
 of characters, 294
 of field automorphisms, 282
linear operator, 101, 296, 320
Cayley–Hamilton Theorem, 368
 characteristic polynomial is unique, 323
 characteristic polynomial of inverse, 324
 commuting simultaneously diagonalizable, 322
determinant, 313
determinant is multiplicative, 314
diagonalizable, 307, 354
diagonalizable if $\dim(V)$ distinct eigenvalues, 322
eigenvalue, 306
eigenvalue of inverse, 324
linear operator (continued)
eigenvector, 306
finite order ⇒ eigenvalues are roots of
unity, 324
has eigenvector over algebraically closed
field, 308, 451
induced map on alternating n forms, 312,
323
injective and not surjective, 319, 325
injective iff surjective, 305
inverse is linear operator, 297, 320
invertible, 296
invertible iff 0 not eigenvalue, 308
invertible iff determinant non-zero, 314
is root of characteristic polynomial, 368
Jordan normal form, 354, 355, 368
left-inverse iff right-inverse on
finite-dimensional vector space, 322
of dimension one vector space, 310
one-sided inverse, 319, 325
shift, 319, 325
singular, 296
surjective and not injective, 319, 325
linear recursion, 368
closed formula, 369
matrix associated to, 369
linear transformation, 93, 295
change-of-basis formula, 303, 322
composition defines matrix multiplication,
302
differentiation, 94
image is vector subspace, 322
injective iff ker $= \{0\}$, 322
integration, 95
kernel, 304, 328
kernel is vector subspace, 322
matrix of, 298, 335
matrix of composition, 301
module, 328
null space, 304
scalar product, 101, 295, 320, 334, 360
sum of, 101, 295, 320, 334, 360
linearly independent set, 96, 332
contained in basis, 97, 318
module, 322
no larger than spanning set, 99
of eigenvectors if distinct eigenvalues, 322
vector space, 96, 318
Liouville’s number, 187, 215
Liouville, Joseph, 187
LLL algorithm, 483
local ring, 89, 184
of \mathbb{P}^n at a point, 475, 515
of projective space, 515
logarithm, 45
discrete, 498
logic, 3
logical equivalence, 5
logical operation, 3
conjunction, 4
disjunction, 4
exclusive disjunction, 4
exclusive or, 4
for all, 7
if and only if, 5
implication, 4
logical equivalence, 5
negation, 3
there exists, 7
there exists a unique, 8
long exact sequence, 508
loop, 55
Lovász, László, 483
Lucas sequence, 30, 370
magic
differentiation, 198
field containing root of polynomial, 112
irreducibility criterion, 204
proof that looks like, 173
property of Noetherian ring, 340
universal mapping property, 424
vector space of alternating forms, 309
magma, 55
map, 12
in a category, 436
sending maps to maps-of-maps, 401, 410
Maschke’s Theorem, 452, 511
false over field of characteristic p, 512
mathematical induction, 16
mathematical cryptography, 496
hard problems used for, 498
mathematical logic, 3
matrix, 298, 334
adjugate, 411
associated to a linear recursion, 369
associated to a module homomorphism,
335
basis for $\text{Mat}_{m \times n}$, 321, 335
Cayley–Hamilton Theorem, 368
change-of-basis formula, 303, 322
column span, 363
commuting pair of, 368
matrix (continued)

commuting simultaneously diagonalizable, 322
conjugate of, 303
diagonal, 307
diagonalizable, 307, 354
dimension of $\text{Mat}_{m \times n}$, 299, 300, 321
elementary operation, 343, 364, 365
endomorphism attached to a, 299, 335, 360
is root of characteristic polynomial, 368
Jordan block, 355
Jordan normal form, 354, 355, 368
nilpotent, 368
of linear transformation relative to basis, 298, 335
permutation, 394, 449
product formula for, 301
rank, 363
rank of $\text{Mat}_{m \times n}$, 335, 336, 360
ring, 68, 83
ring is not domain, 81
row and column reduction, 343, 365
row span, 363
Smith normal form, 343, 344, 365
trace, 324
with entries in a Euclidean domain, 342, 344
with entries in a field, 298, 343
with entries in a principal ideal domain, 342, 344, 365
with entries in a ring, 334
matrix group, 42, see also general linear group
matrix multiplication, 42, 56, 57, 68, 301, 336
is composition of linear transformation, 302
origin of horrible formula, 301
pictorial mnemonic, 302
matroid, 55
matryoshka nesting dolls, 107
maximal element, 337, 418
of a chain, 419
maximal ideal, 77
exists, 79, 506
generated by irreducible element, 164
generated by irreducible polynomial, 113, 222
iff quotient is field, 78
is prime, 79
ring with unique, 89, 184
maximal normal subgroup, 387, 395
quotient is simple, 387, 395
Mazur’s Theorem, 463
meromorphic function, 515
minimal element, 11, 419
minimal polynomial, 225
degree of, 226
is irreducible, 226
separable, 239, 287
Minkowski Theorem, 479, 480, 488
lattice points in compact convex symmetric regions, 516
M_n, see matrix ring
module, 327
algebra that is a finitely generated, 432
annihilator ideal, 349, 365, 366
associative law, 327
automorphism group, 490
bases all have same size, 334
basis iff spans and linearly independent, 332
bilinear form, 361, 362
bilinear map, 361
chain of, 426
change of basis for free, 359, 361
change of generating set, 361
cyclic, 333
cyclic submodule, 331, 358
determinant map on free, 405
dimension of, 334, 336
direct product of infinitely many, 332, 359
direct sum of infinitely many, 332, 359
distributive laws, 327
elementary divisor, 346
End, 334, 397, 490
determinant map on multilinear form, 401, 409, 410
determinant map on endomorphism ring, 334, 360, 490
Euler characteristic, 508
even function, 360
exact functor, 443
exact sequence, 359, 366, 426
extension of scalars, 509
finitely generated, 332, 333, 359, 429, 508
finitely generated over Noetherian ring is Noetherian, 340
finitely generated submodule, 337
free, 332, 333, 429, 508
functor on the category of, 442
Hom, 334, 397
module (continued)
 homomorphism, 328
 homomorphism functor on the category of, 442, 443, 510
 homomorphism kernel is submodule, 330, 358
 identity law, 327
 image is finitely generated free module, 366
 kernel is finitely generated free module, 366
 kernel of linear transformation, 328
 left-exact functor, 443, 508
 linear transformation, 328
 linearly independent set, 332
 matrix associated to homomorphism, 335
 matrix of composition of homomorphisms, 336, 360
 maximal element of collection of submodules, 337
 multilinear form, 361, 362
 multilinear map, 361, 397, 422
 need not have a basis, 332, 333, 359
 Noetherian, 337
 odd function, 360
 of matrices Mat_{n \times s} (R), 334
 of matrices is free, 335
 of n-tuples, 328, 331, 333, 357
 is Noetherian, 340
 over Euclidean domain, 346
 over field is vector space, 329
 over \(F[x] \), 329, 355
 over \(\mathbb{Z}[x] \), 333, 359
 \(\pi \)-primary part, 351, 367
 principal submodule, 331, 358
 product, 330
 product of linear transformations, 334, 360
 quotient is module for quotient ring, 331, 358
 quotient map, 330
 quotient module, 330, 358
 rank of End, 336, 360
 rank of finitely generated, 346
 rank of Hom, 336, 360
 rank one, 405
 right-exact functor, 443
 right-inverse equals left-inverse, 490
 span of subset, 330, 332, 359
 structure theorem, 346, 350

 submodule generated by a set, 330, 332, 359
 submodule of, 330
 sum of linear transformations, 334, 360
 tensor product, 422
 tensor product functor on the category of, 442, 443, 510
 torsion submodule, 349, 365, 366, 427, 508
 modulo, 20, 21
 monic polynomial, 110, 433
 monoid, 55, 64
 monomorphism, see injective
 monster group, 387
 moon made of green cheese, 5
 Mordell, Louis, 462
 Mordell–Weil Theorem, 462
 morphism, see also homomorphism
 in a category, 436
 inverse in a category, 436, 509
 of graphs, 446
 Moufang loop, 55
 multilinear algebra, 422
 multilinear form, 398
 alternating, 399
 map induced by endomorphism, 401, 410
 module, 361, 362
 sign change formula for alternating, 400
 symmetric, 399
 symmetrization of, 410
 multilinear map, 397, 422
 is not homomorphism, 409
 map induced by endomorphism, 409
 module of, 361
 of free modules is free, 398, 409
 rank of space of, 398, 409
 space of, 398, 422
 space of is \(R \)-module, 398
 space of is tensor product homomorphism space, 507
 multilinearity property, 311
 multiplication, 63
 multiplication by \(\alpha \) map, 291
 multiplicative group, 41
 computing large powers, 502, 522
 of field is cyclic, 192, 265, 468
 multiplicatively closed set, 184
 multiplicity
 formula for representations, 456
 of an irreducible representation, 452
multiplicity (continued)
of point in intersection in projective space, 476

multivariate polynomial ring, 176, 470
action of symmetric group, 176, 376
is a UFD, 159
of infinitely many variables, 185, 338
symmetric polynomial, 177

Munroe, Randall, xvii

N, see natural numbers

Napier, John, 45

natural numbers, 7, 10, 413
axiomatic definition, 10
induction, 16
less than, 10
well-ordering principle, 11, 16, 18

negation, 3
distributes over conjunction, 6
distributes over disjunction, 6
double, 5

n-form, see multilinear form; alternating form

$N_G(H)$, see normalizer of a subgroup

nilpotent, 84, 89, 184
matrix, 368
nilradical, 89, 90

Noether, Emmy, 337
Noetherian module, 337
finitely generated module over Noetherian ring is, 340
iff submodule and quotient module
Noetherian, 339

Noetherian ring, 337
Euclidean domain is, 338
example of non-Noetherian ring, 338
finitely generated module over is
Noetherian, 340
Hilbert Basis Theorem, 340, 432
polynomial ring over a field is, 338, 342, 471
polynomial ring over a Noetherian ring is, 340, 342, 432, 471
principal ideal domain is, 338
non-commutative polynomial ring, 491
non-commutative ring, 67, 489
center, 83
endomorphism ring of a module, 490
group ring, 493
homomorphism kernel is two-sided ideal, 518
ideal generated by a set, 517

idempotent element, 518
left ideal, 489
left-inverse, 489
polynomial, 491
polynomial with infinitely many roots, 216
principal ideal, 490
quotient by two-sided ideal, 489, 518
right ideal, 489
right-inverse, 489
right-inverse equals left-inverse, 490
two-sided ideal, 489
two-sided inverse, 489
two-sided inverses are equal, 86, 489
two-sided unit, 296
unit group, 489

non-constructibility versus insolubility, 271
non-residue, 216
non-unique factorization, 167
non-Euclidean geometry, 2
non-Noetherian ring, 338

norm for field extension, 291
normal field extension, 258

normal subgroup, 129
homomorphism from group to
automorphism group of, 388
index two is, 151
intermediate field Galois iff, 247, 262
kernel is, 130
maximal iff quotient is simple, 387, 395
of symmetric group, 381
quotient by is group, 132
simple group if no non-trivial, 380
normalizer of a subgroup, 140, 145

normal field extension, 258

nth cyclotomic polynomial, 206, 218, 267
NTRU cryptosystem, 520
NTRU lattice, 521
null space, 304
is subspace, 304
is trivial iff map is injective, 304
Rank-Nullity Theorem, 304, 429

Nullstellensatz, 471, 514

number field, 464
class number, 466
complex embedding, 468
Dirichlet Unit Theorem, 469
fractional ideal, 466
group of fractional ideals, 466
ideal class group, 465, 466
ideal class group is finite, 466

number field (continued)
 ideal class group of quadratic extension, 467
 real embedding, 468
 ring of integers, 464
 torsion subgroup, 467, 513
 unique factorization of ideal, 465
 unit group, 467
 unit group of quadratic extension, 469
number theory, 17
 algebraic, 464

object in a category, 436
odd function, 360
odd permutation, 378, 400
one-to-one, see injective
one-way function, 503
onto, see surjective
orbit, 134
 equal or disjoint, 134
orbit-stabilizer formula, 135, 261, 374
Orbit-Stabilizer Counting Theorem, 136
order
 of a group, 40
 of a group element, 40
 of group element divides order of group, 50, 499
 of product of elements in abelian group, 53, 192, 367
 of subgroup divides order of group, 50
 of symmetric group, 53, 371
ordered list, 22
ordered pair, 11
ordered set, 10, 418
 partially, 418
orthogonality relation for irreducible characters, 456
outer automorphism, 154, 388
parallel postulate, 2
partial order, 29
partially ordered set, 29, 418
 antisymmetry property, 418
 chain, 419
 comparability property, 418
 maximal element, 337, 418
 maximal element of chain, 419
 minimal element, 419
 reflexive property, 418
 transitive property, 418
 upper bound of chain, 419
path graph, 444, 510
path in a graph, 445
Peano arithmetic, 10
Pell’s equation, 469
permutation, 22, 35, 36, 42
 action on polynomial ring is homomorphism, 177, 185, 376
 cycle, 373
 cycle of an element, 372
 equals product of disjoint cycles, 374
 equals product of transpositions, 375, 400
 even, 378, 400
 identity, 36
 inverse of a, 36
 length of a cycle, 372
 matrix associated to a, 394, 449
 odd, 378, 400
 parity of number of transpositions as product, 376
 representation, 449
 set with n elements has n!, 22
 sign, 378, 400
 sign of product of cycles, 379
 transitive, 372, 393
 transposition, 375
permutation group, see also symmetric group, 371
 Cayley’s Theorem, 379
 center is trivial, 393
 every group a subgroup of some, 379
 Galois group is, 242
 homomorphism to GL_n by permutation matrices, 394
 number of cycles in a power of a cycle, 393
permutation matrix, 394, 449
 determinant is sign, 394
 eigenvalues are roots of unity, 394
permuted polynomial, 176, 376
Persia, 221
p-group has non-trivial center, 138
phi function, 171, 183, 499
philosopher’s stone, 130
π is transcendental, 187
π-cycle, 372
PID, see principal ideal domain
pigs with wings, 5
π-primary part of module, 351, 367
plane, 2
 affine, 470
 lines and circles in, 207
 of complex numbers, 161
plane (continued)
 projective, 472
 vectors in, 91
\IP^n, see projective space
point in projective space, 472
polyhedron, 487
polynomial
 additive, 494
 coefficient is elementary symmetric
 polynomial of roots, 178, 246
 degree, 84, 110
 degree of product, 84, 122
 discriminant, 179, 376, 393
 distinct roots, 197, 223
division with remainder, 31, 88, 111
Eisenstein irreducibility criterion, 205
elementary symmetric, 178, 185, 246,
 275, 468
example of inseparable irreducible, 200,
 238, 290
factorization by roots, 190
factors with integer coefficients, 202
field containing root of, 115, 189, 222
formal derivative, 83, 196
generally insoluble by radicals if degree is
 at least five, 277
homogeneous, 186, 473
implicit formal derivative, 462
inseparable, 197, 223
irreducible, 113, 222
leading coefficient, 341, 362
monic, 110, 433
non-commuting, 491
number of roots at most the degree, 190
permutated, 176, 376
quadratic, 223
reducible, 113, 222
repeated roots, 197, 223
roots permuted by field automorphism,
 228
separable, 197, 223, 235
separable if irreducible and characteristic
 zero, 199, 223, 239
separable if irreducible and derivative is
 non-zero, 199, 223
separable iff f and f' relatively prime,
 198
solution by radicals, 269, 271
solvable by radicals iff Galois group is
 solvable, 274, 294
splits completely, 194, 223
splitting field, 194, 223
symmetric, 177, 376
with infinitely many roots, 216
with more roots than degree, 192, 215
with zero derivative, 196
polynomial ring, 66, 110
action of permutation is homomorphism,
 177, 185, 376
action of symmetric group, 176, 376
automorphism of, 230
basis as vector space, 325
evaluation homomorphism, 67, 82, 90, 94,
 226, 357, 362, 432
greatest common divisor, 288
homomorphism of, 82
irreducible element of, 118
is a Euclidean domain, 161
is a PID, 112, 161, 222
is a UFD, 159, 165
is infinite-dimensional vector space, 98,
 103, 319, 325
is vector space, 94
multivariate, 176, 376, 470
non-commutative, 491
of infinitely many variables, 185, 338
over a field is Noetherian, 338, 342, 471
over a Noetherian ring is Noetherian, 340,
 342, 432, 471
quotient by irreducible polynomial is
 field, 113, 222
polytope, 487
poset, see partially ordered set
power set, 416
powering algorithm, 502, 522
powers generate unit ideal, 182, 351, 366
p-power map, see Frobenius homomorphism
prime, 19
 defined by a logical expression, 8
 divides product, 19
 ideal, 77
 infinitely many, 19, 32
 power dividing factorial, 33
prime ideal, 77
generated by irreducible element, 164
iff quotient is domain, 78
unique factorization as a product of, 465
Primitive Element Theorem, 239, 245, 258,
 261, 287
primitive root, 193
primitive root of unity, 264
Index

principal ideal, 73, 112, 159
fractional, 466
in polynomial ring, 112, 222
left, 490
right, 490
two-sided, 490
principal ideal domain, 159
$au + bv = \gcd$ theorem, 364
column and row operations, 365
Euclidean domain is, 160, 165
every element is product of irreducibles, 182
$F[x]$ is a, 161
irreducible element, 164
irreducible element divides product, 165
is integrally closed, 434
is Noetherian, 338
matrix with entries in, 342, 344, 365
quotient by irreducible element is field, 164
torsion submodule trivial iff module is free, 366
\mathbb{Z} is a, 161
$\mathbb{Z}[i]$ is a, 161
principal submodule, 331, 358
is principal ideal if $M = R$, 331
private key, 497
PRNG, 504
product
divisible by irreducible, 165
divisible by prime, 19
fiber, 439, 509
inclusion homomorphism, 52
module, 330
of countable sets is countable, 504
of cyclic groups, 367
of groups, 51, 389
of ideals, 88
of infinitely many sets, 28
of matrices, 301, 336, 360
of sets, 11, 418
of sets is non-empty, 418
projection homomorphism, 52
projection map, 12
ring, 71, 87
semidirect, 268, 292, 389, 390
tensor, 422
Zorn’s Lemma, 417
product ring, 71, 87
Chinese Remainder Theorem, 169, 351, 353
unit group, 72, 86
product rule, 196
projection map, 12
projection algebraic set, 474
ideal of, 474
projection line, 472
projection plane, 472
conic in, 474
curve in, 474
line in, 474
lines intersect in a point, 474
projection space, 472
Bezout’s Theorem, 476
covered by affine spaces, 514
field of rational functions of, 473
hyperplane, 474
hypersurface, 474, 475
intersection theory, 474
is disjoint union of affine spaces, 473, 514
local ring at a point, 475, 515
multiplicity at intersection of hypersurfaces, 476
\mathbb{P}^n covered by $n + 1$ copies of \mathbb{A}^n, 514
point in, 472
rational function is function on, 473, 514
projective variety, 474
field of rational functions of, 514
meromorphic function, 515
proof, 1
by contradiction, 4, 27
by induction, 16, 17
magic explained, 173
techniques, 3
what is a, 1
pseudo-random number generator, 504
p-Sylow subgroup, see Sylow subgroup
pth cyclotomic polynomial, 206, 267
public key, 497
public key cryptography, 497
contradictory goals, 499
Diffie–Hellman problem, 499, 520
efficiency versus security, 499
hard problems used for, 498
pseudo-random number, 503
trapdoor function, 497
true random number, 503
public key cryptosystem
Elgamal, 500, 520
GGH, 500, 503
lattice-based, 500, 501, 520
NTRU, 520
public key cryptosystem (continued)
 random number, 503
 RSA, 499, 504
Pythagorean theorem, 162

Q, see field of rational numbers
Q, see quaternion group
Q(√2), 107, 109
Q(i), 107, 109
quadratic extension
 ideal class group, 467
 in cyclotomic field, 292
 ring of integers, 464, 513
 unit group, 469
quadratic formula, 105, 221, 269
quadratic polynomial, 223
quadratic residue, 216
quandle, 55
quantifier, 7
 order is important, 9
quantum computer, 198, 501
quartic formula, 105, 270
quaternion group, 43
 Cayley graph, 510
 character table, 511
 composition series, 395
 inner automorphism, 396
quaternion ring, 67, 83, 108, 121, 192, 216
quintic polynomial generally insoluble by radicals, 277
quotient, 18
quotient group, 132
 simple iff subgroup is maximal normal, 387, 395
quotient map
 of groups, 132
 of modules, 330
 of rings, 74
quotient module, 330, 358
 is module for quotient ring, 331, 358
 kernel of map to, 330, 358
 of Noetherian module is Noetherian, 339
quotient ring, 73
 domain iff by prime ideal, 78
 field iff by maximal ideal, 78
 is field, 113, 164, 222
 is \(R \)-module, 329, 359
 non-commutative, 518
 tensor product with, 424
quotient vector space, 305, 322

\(\mathbb{R} \), see field of real numbers

rabbit-out-of-a-hat proof, 173
radical extension, 270
 contained in Galois extension, 270
 has solvable Galois group, 273
radical of an ideal, 88, 471
radical solution of polynomial, 271
\(R \)-algebra, 431
random number, 503
 pseudo, 503
 true, 503
range, 12
rank
 in exact sequence, 429
 of a matrix, 363
 of a representation, 448
 of a representation is value at \(e \), 455
 of elliptic curve, 463
 of elliptic curve is bounded/unbounded?, 463
 of module, 334, 336, 346
 of unit group of number field, 469
Rank-Nullity Theorem, 304, 366, 429
rational function
 field of, 175, 287
 field of on affine variety, 471
 field of on projective space, 473
 field of on projective variety, 514
 gives function on projective space, 473, 514
 multivariable, 176, 275, 276
rationalizing the denominator, 107
\(R \)-basis, 333
real embedding, 468
real vector space
 discrete subgroup, 477
 discrete subgroup is finitely generated free abelian group, 478, 516
 discrete subgroup of maximal rank, 478
 lattice in, 478
reducible element in a ring, 158
reducible polynomial, 113, 222
reduction mod \(m \), 66
reflection map, 459
reflexive property, 14, 29, 418
regular representation, 449
 character value, 455
 multiplicities of irreducible pieces, 452, 456
 relation to group ring, 498, 518
relatively prime, 18
remainder, 18
representation, 448
1-dimensional, 448
abelian group, 453
cracter, 453
is invariant under conjugation, 454
is not a homomorphism, 454
is sum of roots of unity, 511
of direct sum, 454
value of regular, 455
character is sum of roots of unity, 454
character group, 455
character table, 454
dimension, 448
direct sum, 450
finitely many irreducible, 453
group, 448
homomorphism, 450
identity, 448
inner product of characters, 455
inner product of characters equals
multiplicity, 456
invariant subspace, 450
invariant subspace is left ideal of group
ring, 494, 518
irreducible, 451
isomorphism, 450
Maschke’s Theorem, 452, 511
multiplicity of an irreducible
representation in, 452
multiplicity of irreducible in regular
representation, 452, 456
of cyclic group, 449, 453
of dihedral group, 449, 453, 510
of symmetric group, 448
orthogonality relation for irreducible
characters, 456
over field of characteristic p, 512
permutation, 449
projection map to invariant subspace, 511
rank, 448
rank one, 448
regular, 449
Schur’s Lemma, 451
sum of dimensions of irreducible, 453
representation theory, 448
R/I, see quotient ring
right coset, see coset
right-exact functor, 443
tensor product is, 443, 510
right ideal, 489
right principal ideal, 490
right-inverse, 87, 319, 322, 325, 489
equals left-inverse, 86, 489, 490
of morphism in a category, 436, 509
right-shift operator, 319, 322, 325
ring, 63
a, b generate R implies a^n, b^n generate
R, 182, 351, 366
addition, 63
algebra over a, 431
Artinian, 363
associative law, 64
cancellation property, 70
center, 83
characteristic, 75
commutative law, 64
congruence, 73
coordinate ring of affine variety, 471
coset of ideal, 73
distributive law, 64
divisibility, 158
division, 108
element integral over, 433
endomorphism, 87
Euclidean domain, 159
evaluation homomorphism, 67, 81, 226,
357, 362, 432
field, 69, 105
finitely generated algebra over, 362, 432
finitely generated ideal, 337
Gaussian integers, 66
group ring, 493
homomorphism, 65
homomorphism from \mathbb{Z}, 68
homomorphism kernel is ideal, 75, 518
ideal, 72
ideal generated by a set, 73, 517
ideal is R-module, 329, 358, 359
idempotent element, 84, 494, 518
integers modulo n, 65
integral closure, 433
integral domain, 69
integrality criterion, 433
integrrally closed, 433
invariant by group action, 180
irreducible element, 158
isomorphism, 65
kernel of homomorphism, 65
left ideal, 489
left principal ideal, 490
left/right-inverse, 87, 319, 322, 325, 489
local, 89, 184, 515
ring (continued)
 matrix, 68, 83
 maximal ideal, 77
 module, 327
 multiplication, 63
 multiplicatively closed set, 184
 nilpotent element, 84, 184
 nilradical, 89
 Noetherian, 337
 non-commutative, 67, 489
 of additive polynomials, 494
 of elements integral over base ring, 433
 of invariants, 180
 polynomial, 66, 110
 prime ideal, 77
 principal ideal domain, 159
 product, 71, 87, 169
 quaternion, 67, 83, 108, 121, 192, 216
 quotient, 73
 quotient by maximal ideal, 78
 quotient by prime ideal, 78
 quotient is \(R \)-module, 329, 359
 quotient map, 74
 quotient of non-commutative, 518
 radical of an ideal, 88, 471
 reduction modulo \(m \), 66
 right ideal, 489
 right principal ideal, 490
 right-inverse, 489
 subring, 65
 sum and product of integral elements are integral, 433
 two-sided ideal, 489
 two-sided inverse, 489
 two-sided inverses are equal, 86, 489
 two-sided principal ideal, 490
 unipotent element, 84
 unit group, 70, 106, 158, 489
 unit group of product, 72, 86
 unit ideal, 73
 with unique maximal ideal, 89, 184
 zero divisor, 69
 zero ideal, 73
ring of integers, 17, 63
 class number, 466
 cyclotomic field, 464
 Dirichlet Unit Theorem, 469
 fractional ideal, 466
 group of fractional ideals, 466
 ideal class group, 466
 ideal class group is finite, 466
ideal class group of quadratic extension, 467
 is a Euclidean domain, 161
 is a PID, 161
 is a UFD, 20, 165
 of a number field, 464
 of quadratic extension, 464, 513
 torsion subgroup, 467, 513
 unique factorization of ideal, 465
 unit group of quadratic extension, 469
Rivest, Ron, 499
\(R \)-linearly independent, 333
\(R \)-module, see module
\(R \)-multilinear map, see multilinear map
\(R^n \), see module of \(n \)-tuples
root
 inseparable if repeated, 197, 223
 number of bounded by degree, 190
 of polynomial permuted by Galois group, 228
 separable if distinct, 197, 223
 root of unity, see also cyclotomic field
character is sum of, 454, 511
eigenvalue of finite-order linear operator, 324
field generated by, 264
 primitive, 264
 roots modulo \(m \) problem, 498
Rose’s song, 157
Roth, Klaus, 215
row and column reduction, 343, 365
 over a Euclidean domain, 344
 over a field, 343
 over a principal ideal domain, 365
row rank, 363
row span, 363
 has same dimension as column span, 363
RSA cryptosystem, 499
 incorporating randomness, 504
\(R \)-span, 333
ruler and compass construction, 207
Russell’s paradox, 417
\(R[x] \), see polynomial ring
scalar, 93
Schröder–Bernstein Theorem, 415, 504
Schur’s Lemma, 451
semidirect product, 268, 292, 389, 390
affine linear group, 396
 dihedral group is, 392
 group decomposition into, 391
 group law has inverses, 396
semidirect product (continued)
 group law is associative, 390
 is a group, 390
 of cyclic groups, 392, 396
 of order twelve, 396
semigroup, 55
separable, 197, 223
 if irreducible and characteristic zero, 199, 223
 if irreducible and derivative is non-zero, 199, 223
 iff \(f \) and \(f' \) relatively prime, 198
separable field extension, 239, 287
 always in characteristic zero, 238, 239, 242, 287
separable polynomial, 197
 Galois group, 235
 splitting field, 235
set, 9
 Axiom of Choice, 418
 binary relation, 29
 Cantor’s diagonalization method, 415
 cardinality, 415
 complement, 11
 countable, 413, 414
 difference, 11
 disjoint union of, 14
 element of, 9
 empty, 10
 empty set is always subset of, 10
 equivalence relation, 14, 29
 existence of uncountable, 416
 fiber product of, 509
 finite, 10, 414
 group action on, 133
 infinite, 414
 injective function, 414
 intersection, 10
 intersection is fiber product, 509
 is subset of itself, 10
 not an element of, 9
 number of ordered lists of specified size, 23
 number of subsets of specified size, 23
 of all sets, 416
 of functions from \(S \) to \(T \), 415
 of sets, 127, 416–418
 orbit under group action, 134
 partially ordered, 29, 418
 permutation of, 22
 power set of, 416
product is non-empty, 418
product of, 11
product of arbitrarily many, 418
product of countable is countable, 504
projection map on product of, 12
\(\#S = \#T \) iff \(\#S \leq \#T \) and \(\#T \leq \#S \), 415, 504
Schröder–Bernstein Theorem, 415, 504
 set of subsets of, 415, 416
 stabilizer under group action, 134
 subset, 10
 surjective function, 414
 symmetric difference, 27
 symmetric group of, 42, 134
 totally ordered, 10, 418
 uncountable, 413, 414
 unequal cardinality, 415, 506
 union, 10
 well-ordered, 419
set theory, 9, 413
 continuum hypothesis, 504
 Russell’s paradox, 417
 Well-Ordering Theorem, 419
 Zermelo–Frankel axioms, 419
 Zorn’s Lemma, 419
Shamir, Adi, 499
Shanks, Dan, 520
shift operator, 319, 325
Shor, Peter, 198, 501
short exact sequence, 359, 366, 426
 built from long exact sequence, 508
 iff satisfies four conditions, 426
 of quotient modules, 427
 tensor product by \(R/I \), 427
 with product in middle, 426
shortest vector problem, 481
 Gaussian heuristic, 517, 522
 to find NTRU private key, 521
sign, 378, 400
 is determinant of permutation matrix, 394
 is homomorphism, 378
 is surjective, 378
 of a cycle, 379
 of a product of cycles, 379
simple group, 129, 380
 abelian, 380
 alternating group is, 381
 cannot have order \(p^i q^j \), 381
classification of finite, 386
 composition series, 387
simple group \((continued)\)
 of prime power order is cyclic, 380
 sporadic finite, 387
singu
lar linear operator, 296
singu
lar value, see eigenvalue
size function, 159, 344
 on \(F[x]\), 161
 on \(\mathbb{Z}\), 161
 on \(\mathbb{Z}[i]\), 161
\(s_k\), see elementary symmetric polynomial
skew field, 108, 121
\(SL_n\), see special linear group
small category, 436
Smith normal form, 343
 elementary operations to reduce to, 344, 365
\(S_n\), see symmetric group
solubility by radicals, 271
 iff Galois group solvable, 274, 294
solubility versus constructibility, 271
solvable group, 272, 381, 387
 quotient group of, 272, 293
 radical extension Galois group is, 273
\(S_n\) not solvable for \(n \geq 5\), 275, 381
subgroup of, 272, 293
Sondheim, Stephen, 157
span
 notation for, 333
 of elements of a module, 330, 332, 359
 of set of vectors, 96, 318
spanning set
 contains basis, 97, 318
 is larger than linearly independent set, 99
 vector space, 96, 318
special linear group, 57
splits completely, 194, 223
splitting field, 124, 194, 223, 258
 degree, 194, 223
 exists, 194, 223
 Galois group order equals degree, 235
 in characteristic zero always Galois, 238
 in characteristic zero always separable, 287
 is unique, 232
 of \(X^4 - 2\), 233, 244, 248, 287, 288
sporadic finite simple group, 387
square-and-multiply algorithm, 502, 522
square, commutative, 340
square-free integer, 198
square root
 of complex number, 252, 289
 of \(n\) is irrational, 32
 of \(p\) is irrational, 20
square, symmetry of, 38
stabilize, 337
stabilizer, 134
 orbit counting theorem, 136
stabilizer-orbit formula, 135, 261, 374
standard basis, 95
 coordinates in, 95
Stirling’s formula, 480, 517
structure theorem
 finite abelian groups, 52
 finitely generated abelian groups, 353, 485
 finitely generated modules, 346, 350, 463
subcategory, 437
subfield, 108
subgraph, 446
 isomorphism problem, 446
subgroup, 46
 conjugate, 129
 coset of a, 48, 127
 double coset, 148
 generated by element, 47
 index of, 50
 Lagrange’s Theorem, 50
 normal, 129
 number of conjugates, 145
 of index two is normal, 151
 order divides order of group, 50
 product of two, 147
 semidirect product of, 391
 trivial, 47
submodule, 330
 chain stabilizes, 337
 cyclic, 331, 358
 finitely generated, 337
 generated by a set, 330, 332, 359
 kernel is a, 330, 358
 maximal element of collection of, 337
 of Noetherian module is Noetherian, 339
 principal, 331, 358
 torsion, 349, 365, 366, 427, 508
subring, 65, 431
subset, 10
 intersection is fiber product, 509
 set of, 415, 416
subspace of a vector space, 303
 quotient by, 305, 322
sum
 of cubes, 30
 of ideals, 88
sum (continued)
of squares, 17
rule for derivatives, 196
Sun Tzu Suan Ching, 168
surjective, 12, 414
 iff injective, 53
 iff injective for finite same size sets, 13, 29
SVP, see shortest vector problem
swap, 375
 lemma, 98
 rows/columns of a matrix, 343
S_X, see symmetric group
Sylow subgroup, 142
 are conjugates, 143, 149
 number of, 143, 149
 of symmetric group, 380
Sylow’s Theorem, 140, 143, 149, 253, 278, 380
symmetric bilinear form, 361, 362
symmetric difference, 27
symmetric form, 399
 map induced by endomorphism, 401, 410
symmetric function field, 275, 276
symmetric group, 42, 134, 371
 action on multivariate polynomial ring, 176, 376
 acts on field of rational functions, 275, 276
 alternating group is normal subgroup of, 379
 alternating subgroup, 379, 400
 automorphism group of, 389
 Cayley’s Theorem, 379
 composition series, 386, 395
 cycle, 373
 disjoint cycles commute, 373, 393
even permutation, 378, 400
every group a subgroup of some, 379
generated by cycle and transposition, 278, 394
is non-abelian, 371
n-cycle in S_n, 372, 393
normal subgroup of, 381
(not) isomorphic to dihedral group, 58
not solvable for n at least five, 275, 381
odd permutation, 378, 400
order of, 53, 371
permutation is product of disjoint cycles, 374
permutation is product of transpositions, 375, 400
representation of, 448
sign is homomorphism, 378
sign of a permutation, 378, 400
sign of product of cycles, 379
Sylow subgroup of, 380
transitive permutation, 372, 393
transposition, 375
symmetric polynomial, 177, 376
 is polynomial of elementary symmetric polynomials, 179
symmetric rational function, 275, 276
symmetrization of a multilinear form, 410
symmetry property, 14, 29
tangent line, 458
tensor product, 422
 commutative diagram, 423
distributes over direct product, 507
 exists and is unique, 423, 506
extension of scalars, 507, 509
functor is right-exact, 443, 510
functor on the category of modules, 442, 443, 510
 homomorphism space is space of multilinear maps, 507
 is commutative, 507
 of short exact sequence by R/I, 427
universal mapping property, 422, 424
 with quotient ring, 424
tensor product functor, 510
covariant, 510
 on modules is right-exact, 510
tensor product functor, 510
covariant, 510
torsion submodule, 349, 365, 366, 427
 exact sequence of, 508
 trivial iff module is free, 366
totally ordered set, 10, 418
trace, 291, 324, 453
 for field extension, 291
 is conjugation invariant, 324
 is linear, 324
 of a linear operator, 324
 of a matrix, 324
 of a representation, 453
Index

trace (continued)
 sum of diagonal entries, 324
 sum of eigenvalues, 324
transcendental number, 187, 215
e, 187
π, 187
uncountably many, 187
transitive
 group action, 136, 152
 permutation, 372, 393
transitive property, 14, 29, 418
transposition, 375
 and cycle generate S_n, 278, 394
 parity of number in a product, 376
 permutation is product of, 375, 400
transversal intersection, 476, 477
trapdoor function, 497
trisection problem, 208
trivial invariant subspace, 451
truth table, 3, 6
truth value, 3
two-sided ideal, 489
two-sided inverse, 489
two-sided principal ideal, 490
two-sided unit, 86, 296

UFD, see unique factorization domain
uncountable set, 413, 414
 Cantor’s diagonalization method, 415
 existence of, 416
 \mathbb{R} is, 504
undirected graph, 444
unequal cardinality, 415, 506
union, 10
 complement of, 27
 disjoint, 14
 of infinitely many sets, 28
unipotent, 84
unique factorization domain, 158
 Euclidean domain is a, 165
 $F[x]$ is a, 165
 is integrally closed, 434
 PID is a, 165
 polynomial ring is, 159
 ring that is not a, 167
 \mathbb{Z} is a, 20, 165
 $\mathbb{Z}[i]$ is a, 165
unit, 70, 106, 158
 in endomorphism ring, 490
 two-sided, 86, 296
 unit group, 70, 106, 158, 489
 Gaussian integers, 70
 in exact sequence with ideal class group, 514
 of a number field, 467
 of quadratic extension, 469
 of $\mathbb{Z}/m\mathbb{Z}$, 70
 product ring, 72, 86
 unit ideal, 73
 generated by powers, 182, 351, 366
Unit Theorem of Dirichlet, 469
universal mapping property
 fiber product, 439
 fiber product of sets, 509
tensor product, 422, 424
unordered pair, 443
upper bound of a chain, 419

variety, 470, 471, 474
 algebraic set is union of, 471
vector, 93
 coordinates for standard basis, 95
 linear combination of, 95
 zero, 93
vector space, 93
 alternating n-form, 311, 323
 associative law, 93
 bases all have same size, 98, 336
 basis, 95
 basis iff $\delta(v_1, \ldots, v_n) \neq 0$, 312
 basis iff spans and linearly independent, 96, 318
 basis iff spans iff linearly independent, 102
 basis of eigenvectors, 307, 322, 354
 column span of a matrix, 363
 commuting matrices, 368
 contains basis, 98, 421, 506
 determinant non-zero, 314
 determinant of linear operator, 313
diagonalizable linear operator, 307, 322, 354
dimension of, 98
dimension one, 310
 direct product of infinitely many, 319, 325
direct sum of infinitely many, 320, 325
discrete subgroup in \mathbb{R}^n, 477
discrete subgroup is finitely generated free
 abelian group, 478, 516
discrete subgroup of maximal rank, 478
distributive laws, 93
eigenvalue, 306
eigenvector, 306
vector space (continued)
eigenvector exists over algebraically closed field, 308, 451
endomorphism ring, 101, 296, 320
extension of scalars, 507
general linear group, 296, 448
Hom, 295
homomorphism, 93, 295
identity law, 93
image is subspace, 322
infinite-dimensional, 98, 318, 325
invertible linear operator, 296
is module over field, 329
isomorphic to space of \(n \)-tuples, 102
Jordan normal form of linear operator, 354, 355
kernel is subspace, 322
lattice in \(\mathbb{R}^n \), 478
linear combination of vectors, 95
linear operator, 101, 296, 320
linear operator on finite-dimensional, 305
linear operator on infinite-dimensional, 325
linear transformation, 93, 295
linearly independent set, 96, 318
of \(n \)-tuples, 94
of polynomials, 94
quotient, 305, 322
rank of discrete subgroup is at most rank of, 516
Rank-Nullity Theorem, 304, 366, 429
row span of a matrix, 363
scalar, 93
shift operator, 319, 325
singular linear operator, 296
span of set of vectors, 96, 318
spanning set, 96, 318
standard basis of \(F^n \), 95
subspace, 303
Swap Lemma, 98

Venn diagram, 25
vertex, 443
volume
doubling volume of cube, 208
of a ball in \(\mathbb{R}^n \), 517
of a lattice, 478, 486, 516
Voronoi cell, 486
boundary is contained in hyperplanes, 487
boundary is polyhedron, 487
is fundamental domain, 487

Wedderburn’s Theorem, 108
Weil, André, 462, 464
well-ordering principle, 11, 16, 18
Well-Ordering Theorem, 417, 419
Wiles, Andrew, 280
Wilson’s formula, 121
wizzle, 9

xkcd, xvii, 7, 66

\(\mathbb{Z} \), see ring of integers
Zermelo–Fraenkel axioms, 419
zero divisor, 69
zero ideal, 73
zero vector, 93
\(\mathbb{Z}(G) \), see center of a group
\(\mathbb{Z}_G(H) \), see centralizer of a subgroup
\(\mathbb{Z}[i] \), see Gaussian integers
\(\mathbb{Z} \)-module, 328
is abelian group, 328
need not have a basis, 333
\(\mathbb{Z}/m\mathbb{Z} \), see integers modulo \(m \)
Zorn’s Lemma, 417, 419
existence of maximal ideal, 506
existence of vector space basis, 421, 506
implies the Axiom of Choice, 419
\(\mathbb{Z}[x] \)-module, 333, 359
Zyglx theory, 1