Subject Index

Algebraic number theory, 64, 89
Ambiguous class, see Class group
Ambiguous form, see Quadratic forms, binary
Automorphism, see Quadratic forms
Baker, A., 187
Binomial coefficients, 19, 20, 30
Birch and Swinnerton–Dyer conjecture, 188
Box principle, 48. See also Pigeon-hole principle
Character, group, 88
Chebyshev, P. L., 1, 3, 17, 19
Chinese remainder theorem, 64, 65–66
Class group, 102, 147, 152–156, 160, 183. See also Class number; Quadratic forms, binary
ambiguous class, 159, 160, 164–168 composition:
of classes, 151–153
of forms, 149, 154
concordant forms, 149, 150, 155
principal class, 152, 154
Class number, 133, 183–189. See also Class group
equals one, 155–156, 184–185
finiteness, 58, 61–62, 129, 152, 181
Composite integer, 2, 3, 94
witness, 94
Composition, see Class group; Product identities
Concordant forms, see Class group
Congruences, 25, 26. See also Integers mod \(m \)
biquadratic
\(x^4 = a, 34, 95, 103 \)
composite modulus 65–67
linear, 66, 69, 127, 155
quadratic, see also Legendre symbol
\(x^2 = -1, 25, 27–28, 30, 178 \)
\(x^2 = \pm 2, 31, 53–54, 76 \)
\(x^2 = -3, 31, 38 \)
\(x^2 = 5, 31 \)
\(x^2 = a, 28, 63–64, 67–69, 70, 95, 97–98, 99, 102 \)
\(x^2 + y^2 = -1, 52 \)
\(x^2 + y^2 = a, 55 \)
others, 95, 175–177
Conjugation in quadratic ring, 111, 117
Continued fractions, 10, 135, 138
nearly simple, 135–136, 140
Convenient numbers, see Genus group
Convex set, 50
Cyclic groups, 29, 31, 131
Cyclotomic ring, 89
Decimal fractions, 31
Dedekind domain, 89
Descent, 25, 50–52, 105
infinite, 52
Deuring, M., 186
Diophantine approximation, see Rational approximation
Diophantine equations, vii. See also Sum of squares; Pell equation
linear, 1, 11–16, 119, 124
positive solutions, 16, 17
quadratic:
\(x^2 = 2y^2, 52, 105 \)
\(x^2 + y^2 = n, \) see Sum of squares, two
\(x^2 \pm 2y^2 = n, 33–34, 50, 53–54 \)
\(x^2 + 3y^2 = n, 38, 62 \)
\(x^2 + xy + y^2 = n, 38, 60, 62 \)
Diophantine equations, vii. (Continued)
\[x^2 + 5y^2 = n, \quad 102, 148, 154, 160 \]
\[x^2 + 36y^2 = p, \quad 103, 161 \]
\[x^2 + 64y^2 = p, \quad 95, 161 \]
\[y^2 = 2x^2 + 1, \quad 105-108 \]
\[x^2 - dy^2 = \pm 1, \quad \text{see Pell equation} \]
\[x^2 - dy^2 = m, \quad 123, 124 \]
\[ax^2 + bxy + cy^2 = m, \quad 104-105, 118-123, 128, 134. \quad \text{See also Prime numbers, representation by quadratic forms} \]
\[x^2 + y^2 - z^2, \quad 54 \]
\[y^2 - x = x, \quad 55 \]
\[x^4 + y^4 = z^2, \quad 54 \]
\[x^4 + y^4 = z^2, \quad 54 \]
\[x^3 + dy^3 + d^2z^3 - idxyz = 1, \quad 118 \]
Dirichlet, P. G. L., primes in arithmetic progressions, 4, 5, 23, 99, 158-159, 162, 172, 204
\[3k + 2, \quad 5 \]
\[4k + b, \quad 4, 22-23, 24, 32 \]
\[5k - 1, \quad 76 \]
\[6k + 5, \quad 5 \]
\[8k + b, \quad 34, 76 \]
\[10k + 1, \quad 32 \]
\[10k + 9, \quad 76 \]
\[p^n k + 1, \quad 32 \]
Discriminant, 95, 180. See also Quadratic forms, binary fundamental, 183, 184
Divisibility, 2, 25
divisor a product, 10
do factors in product, 8, 9
Division algorithm, 6, 28, 35
Divisors:
common, 6
greatest common (GCD), 1, 6, 7, 9, 12, 13, 35-36
number, 10
sum, 10, 11
Duplication theorem, see Genus group
Egyptian fraction, 47
Elementary divisors, 16
Elliptic curve, 187-188
Equivalence of forms, see Quadratic forms
Eratosthenes, 3
Euclid, 2, 17, 34
Euclidean algorithm, 6, 36, 119
Euclidean domain, 36
Euclid’s lemma, 8
Euler, L., 17, 22, 23, 52, 63, 73, 161, 185
Euler product, 17-18, 22-23
Factorization, 119
of factorials, 20
uniqueness, 36, 89
Gaussian integers, 25, 34-36
integers, 1, 8-9, 18
other rings, 38, 39
Farey sequences, 39-45, 47
Father, vii
Fermat, P., 5, 24, 50, 51
last theorem, 54, 55, 89
little theorem, 26-27, 30
Fibonacci numbers, 9, 118
Fourier transform, 84-89
Frobenius, G., 185
Fundamental theorem of arithmetic, see
Factorization, uniqueness
Fundamental unit, see Order, units in
Gardner, Martin, vii
Gauss, C. F., 1, 17, 34, 63-64, 72, 77, 80, 83, 102, 129, 147, 149, 157, 162, 163, 178, 180, 181, 183, 184
Gaussian form, see Quadratic forms, binary
Gaussian integers, 34-38
generalizations, 89, 111-112. See also Order
Gauss lemma, 64, 80-83
Gauss sums, 64, 83, 89, 90-91
Gauss symbol, see Genus group
Genus group, 102, 147-148, 157-158. See also
Class group
convenient numbers, 161
duplication theorem, 159, 160, 162, 168, 172, 175
Gauss symbol, 157
principal genus, 157, 160, 175
Geometry of numbers, see Minkowski’s theorem
Goldfeld, D. M., 187, 188
Greatest common divisor, see Divisors, greatest common
Gronwall, 186
Gross, B. H., 188
Hadamard, J., 17
Heegner, K., 186, 187
Heilbronn, H., 186
Hensel’s lemma, 65, 69
Identity, see Product identities
Infinite descent, see Descent, infinite
Integers, see also Factorization; Prime numbers
nonsquare, 99, 109
relatively prime, 7
squarefree, 11
Integers mod m, 25, 26. See also Congruences
invertible, 26, 30
primitive roots, 29–32, 54, 74, 75
roots of polynomials, 28, 30, 67, 69
Irrational numbers, 11, 105, 109, 111, 116
Jacobi symbol, 92–93
Kronecker symbol, 64, 95–99, 100, 157–158, 160
Lagrange, J. L., 52, 74
Landau, E., 23, 186
Lattices:
integer, 40–43
in \(\mathbb{R}^2 \), 47
fundamental parallelogram, 47
Least common multiple, 11
Lee Ah Huat, vii
Legendre, A. M., 17
Legendre symbol, 64, 70–73, 80, 92, 93. See also Quadratic reciprocity
evaluation, see also Congruences, quadratic
\((-1/p)\), 71, 81
\((2/p)\), 71–72, 81, 91, 93
\((5/p)\), 74–75
\(L\) series, 23, 187
Mestre, J.-F., 188
Minkowski’s theorem, 25, 47–50
Modular forms, 187
Modular functions, 185, 186
Module of binary form, See Quadratic forms, binary
Montgomery, H. L., 187, 188–189
Negative Pell equation, see Pell equation, negative
Neighbor of binary form, see Reduction, binary forms
Newton’s method, see Hensel’s lemma
Nonsquare integers, see Integers, nonsquare
Norm in quadratic ring, 34, 111–112, 117, 120
Order, 112, 117, 122, 183
square discriminants, 113, 117
units in, 105, 112–114, 120. See also Pell equation
fundamental unit, 114, 117
Partial fractions, 16
Pell equation, 104–117, 119, 124–126, 145
and automorphisms of forms, 105, 124–126, 142, 145
negative, 109, 116, 127, 168
Pell form, 108
and units in orders, 105, 113–114, 117
Pell form, see Pell equation, Pell form
Perfect numbers, 11
Period of quadratic form, see Reduction, binary forms
Pi, 23, 45
Pigeon-hole principle, 110. See also Box principle
Primality tests, 3, 65, 93–94
Prime numbers, vii, 1, 2, 93. See also Factorization
in arithmetic progressions, see Dirichlet distribution, 1, 3, 17, 19, 21, 204
generated by polynomial, 6
infinitely many, 1, 2, 5, 17, 18
largest known, 5
representation by quadratic forms, 56, 59, 63, 64, 99–103, 148, 159–160
size of nth, 21
sum of reciprocals, 17–19, 22
Prime number theorem, 17
Primitive roots, see Integers mod m, primitive roots
Principal class, see Class group
Principal form, see Quadratic forms, binary
Principal genus, see Genus group
Product identities, 33, 52, 102, 106, 112, 148, 154
Pythagoras, 105
Pythagorean triples, see Diophantine equations, \(x^2 + y^2 = z^2 \)
Quadratic field, 111, 183, 185, 186
Quadratic forms, 204. See also Diophantine equations; Reduction
binary, 5, 55. See also Class group; Genus group
ambiguous, 165, 168
special, 165, 168
automorphisms, 105, 124
improper, 125, 126–127, 134
proper, 105, 125–126, 142, 144–145, 166. See also Pell equation
Quadratic forms (Continued)
 discriminant, 55, 60. See also Discriminant equivalence, 57, 61, 100–102
 proper, 57, 61–62, 102, 105, 128, 147, 151–153, 181
 gaussian, 152
 integral, 55
 module, 119
 Pell form, see Pell equation, Pell form
 positive definite, 55, 61
 primitive, 101, 183
 principal, 152
 representation of integers by, 55, 156. See also Prime numbers; Diophantine equations
 proper, 102, 124, 128, 134
 roots, 139–140, 143
 square discriminants, 61–62, 118–119, 123
ternary, 168–169
classically integral, 172
determinant, 169, 171
equivalence, 169
matrix, 169
$y^2 - xz$, 169, 171, 174–175
Quadratic nonresidue, 70, 74, 76–77
Quadratic reciprocity, 63–65, 72–73, 98, 101
proofs, 64, 76, 78–80, 82–83, 84, 91, 163–164
supplement, 71, 81. See also Congruences, quadratic; Legendre symbol, evaluation
Quadratic residue, 70, 76–77. See also Congruences, quadratic; Legendre symbol
Reduced form, see Reduction, binary forms
Reduction, see also Quadratic forms
binary forms, 169
 negative discriminant, 25, 58–61, 181–183
 reduced form, 59, 168, 183–184
 positive nonsquare discriminant, 61, 105, 128–132, 141–142
 and automorphisms, 144
 neighbor, 129, 132, 134, 140
 modified, 142
 and Pell equation, 145
 period, 130
 reduced form, 129, 130–131, 139, 142
 positive square discriminant, 61–62
 zero discriminant, 62
ternary forms, 169–171
Representations of integers, see Diophantine equations; Prime numbers; Quadratic forms
Riemann, G. F. B., 17
Riemann hypothesis (GRH), 186, 189
Roots of quadratic forms, see Quadratic forms, binary
Schur, I., 84, 85
Siegel, C. L., 186
Solovay, R., 93–94
Squarefree integers, see Integers, squarefree
Stark, H. M., 187
Strassen, V., 93–94
Sum of squares:
three, 147, 148, 159, 172, 177–178
four, 52–53, 179
Symmetric set, 50
Triangular numbers, 179
Unique factorization, see Factorization, uniqueness
Unique factorization domain, 35, 36
de la Vallée Poussin, C. J., 17
Vandermonde matrix, 87, 88
Visible point, 40
Weinberger, P. J., 187, 188–189
Wilson's theorem, 27, 28
 generalized, 31
Witness, see Composite integer, witness
Zagier, D., 188
Zeta functions, 186