Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Einführung in die Elementare und analytische Theorie der algebraischen Zahlen und der Ideale
 
Einfuhrung in die Elementare und analytische Theorie der algebraischen Zahlen und der Ideale
AMS Chelsea Publishing: An Imprint of the American Mathematical Society
Hardcover ISBN:  978-0-8218-3758-0
Product Code:  CHEL/62.H
List Price: $69.00
MAA Member Price: $62.10
AMS Member Price: $62.10
Einfuhrung in die Elementare und analytische Theorie der algebraischen Zahlen und der Ideale
Click above image for expanded view
Einführung in die Elementare und analytische Theorie der algebraischen Zahlen und der Ideale
AMS Chelsea Publishing: An Imprint of the American Mathematical Society
Hardcover ISBN:  978-0-8218-3758-0
Product Code:  CHEL/62.H
List Price: $69.00
MAA Member Price: $62.10
AMS Member Price: $62.10
  • Book Details
     
     
    AMS Chelsea Publishing
    Volume: 621949; 147 pp
    MSC: Primary 11; 01

    The first part of this book provides a short and self-contained account of the theory of algebraic numbers and ideals leading up to Dedekind's theorem that every ideal of an algebraic number field is the unique product of prime ideals. The author also proves the finiteness of class number as well as Dirichlet's unit theorem. The second part studies Landau's generalization of the prime number theorem that was conjectured by Gauss in the eighteenth century and proven by Hadamard and Vallée Poussin in 1896. Landau generalized this fundamental result to arbitrary number fields in 1903. A few months before the publication of this book in 1917, Hecke proved a ground-breaking result about the analytic continuation of Dedekind zeta functions. The inclusion of a proof of Hecke's result in this book enabled Landau to reprove and sharpen his old prime ideal theorem as well as to present a variety of interesting corollaries. This book is based on lectures that the author gave in Berlin and Göttingen.

  • Requests
     
     
    Review Copy – for publishers of book reviews
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 621949; 147 pp
MSC: Primary 11; 01

The first part of this book provides a short and self-contained account of the theory of algebraic numbers and ideals leading up to Dedekind's theorem that every ideal of an algebraic number field is the unique product of prime ideals. The author also proves the finiteness of class number as well as Dirichlet's unit theorem. The second part studies Landau's generalization of the prime number theorem that was conjectured by Gauss in the eighteenth century and proven by Hadamard and Vallée Poussin in 1896. Landau generalized this fundamental result to arbitrary number fields in 1903. A few months before the publication of this book in 1917, Hecke proved a ground-breaking result about the analytic continuation of Dedekind zeta functions. The inclusion of a proof of Hecke's result in this book enabled Landau to reprove and sharpen his old prime ideal theorem as well as to present a variety of interesting corollaries. This book is based on lectures that the author gave in Berlin and Göttingen.

Review Copy – for publishers of book reviews
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.