Contents

Preface ix
Organization of the Text x
Acknowledgments x

Chapter 1. Vector Spaces over a Field \mathbb{K}
1.1. Vector Spaces 1
Basic Properties and Examples 1
Multivariate Polynomials and Multi-Index Notation 4
Row Space and Column Space of a Matrix 7
1.2. Vector Subspaces 7
Systems of Linear Equations and Their Solutions 8
$M(n,\mathbb{R})$ and Other Spaces of Matrices 11
1.3. Solving Matrix Equation $A\mathbf{x} = \mathbf{b}$ 12
Elementary Operations and Echelon Form of $A\mathbf{x} = \mathbf{b}$ 13
The Homogeneous Equation $A\mathbf{x} = \mathbf{0}$ 16
Solving Inhomogeneous Equations $A\mathbf{x} = \mathbf{b}$ 17
Determining the Linear Span of a Set of Vectors 18
Implicit and Parametric Descriptions of Vector Subspaces 19
More on Elementary Row and Column Operations 20
1.4. Linear Span, Independence, and Bases 21
Existence and Construction of Bases 21
The Dimension $\dim(V)$ of a Vector Space 24
Implicit and Parametric Description of Subspaces (Revisited) 26
The Lagrange Interpolation Formula 29
Rank of a Matrix: Row Rank vs. Column Rank 30
1.5. Quotient Spaces V/W 31
Algebraic Structure in V/W 32
Finding Bases in V/W and the Dimension Formula 34
Additional Exercises 38

Appendix: The Degree Formula for $K[x_1, \ldots, x_N]$ 46

Chapter 2. Linear Operators $T : V \to W$ 49
2.1. Definitions and General Facts 49
Dimension Theorems for Kernel $K(T)$ and Range $R(T)$ 51
Computing $K(T)$ and $R(T)$ 53
2.2. Isomorphisms and Invariant Subspaces 56
Eigenvalues, Eigenspaces, and the Characteristic Polynomial $p_T(x)$ 56
Decomposition of Operators 57
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isomorphisms of Vector Spaces</td>
<td>59</td>
</tr>
<tr>
<td>More on Quotient Spaces</td>
<td>60</td>
</tr>
<tr>
<td>First and Second Isomorphism Theorems for Quotient Spaces</td>
<td>60</td>
</tr>
<tr>
<td>2.3. Direct Sums of Vector Spaces</td>
<td>62</td>
</tr>
<tr>
<td>Projection Operators and Direct Sums</td>
<td>64</td>
</tr>
<tr>
<td>Direct Sums and Diagonalization</td>
<td>67</td>
</tr>
<tr>
<td>Independence of the Eigenspaces</td>
<td>67</td>
</tr>
<tr>
<td>2.4. Representing Linear Operators as Matrices</td>
<td>69</td>
</tr>
<tr>
<td>The Associated Matrices $[T]_{gX}$</td>
<td>69</td>
</tr>
<tr>
<td>The Correspondence Between Matrices and Linear Operators</td>
<td>72</td>
</tr>
<tr>
<td>Change of Basis and Similarity Transformations</td>
<td>76</td>
</tr>
<tr>
<td>Similarity Classes in Matrix Space</td>
<td>79</td>
</tr>
<tr>
<td>Similarity and RST Equivalence Relations</td>
<td>80</td>
</tr>
<tr>
<td>Additional Exercises</td>
<td>82</td>
</tr>
<tr>
<td>Chapter 3. Duality and the Dual Space V^*</td>
<td>89</td>
</tr>
<tr>
<td>3.1. Definitions and Examples</td>
<td>89</td>
</tr>
<tr>
<td>Lengths and Orthogonality of Vectors in Inner Product Spaces</td>
<td>90</td>
</tr>
<tr>
<td>Duality and the Fourier Transform</td>
<td>93</td>
</tr>
<tr>
<td>3.2. Dual Bases in the Dual Space V^*</td>
<td>94</td>
</tr>
<tr>
<td>3.3. The Transpose $T^T : W^* \rightarrow V^*$ of $T : V \rightarrow W$</td>
<td>97</td>
</tr>
<tr>
<td>Matrix Description of a Transpose T^T</td>
<td>98</td>
</tr>
<tr>
<td>Calculating the Transpose of a Projection Operator</td>
<td>99</td>
</tr>
<tr>
<td>Reflexivity of Finite-Dimensional Spaces</td>
<td>101</td>
</tr>
<tr>
<td>The Annihilator M^o of a Subspace M in V</td>
<td>103</td>
</tr>
<tr>
<td>A Dimension Formula for Annihilators M^o</td>
<td>103</td>
</tr>
<tr>
<td>Row Rank vs. Column Rank (Revisited)</td>
<td>104</td>
</tr>
<tr>
<td>Outline of a Proof That $(\text{RowRank}) = (\text{ColRank})$</td>
<td>104</td>
</tr>
<tr>
<td>Additional Exercises</td>
<td>105</td>
</tr>
<tr>
<td>Chapter 4. Determinants</td>
<td>109</td>
</tr>
<tr>
<td>4.1. The Permutation Group S_n</td>
<td>109</td>
</tr>
<tr>
<td>Cycles and the Cycle Decomposition Theorem</td>
<td>110</td>
</tr>
<tr>
<td>Parity of a Permutation</td>
<td>114</td>
</tr>
<tr>
<td>(Optional) An Alternative Proof of the Parity Theorem 4.17</td>
<td>117</td>
</tr>
<tr>
<td>4.2. Determinants</td>
<td>118</td>
</tr>
<tr>
<td>Proving the Basic Properties of $\det(A)$</td>
<td>119</td>
</tr>
<tr>
<td>Row Operations, Determinants, and Matrix Inverses</td>
<td>122</td>
</tr>
<tr>
<td>Computing Matrix Inverses</td>
<td>124</td>
</tr>
<tr>
<td>Computational Issues</td>
<td>126</td>
</tr>
<tr>
<td>Proving the Multiplicative Property $\det(AB) = \det(A)\det(B)$</td>
<td>127</td>
</tr>
<tr>
<td>Defining Determinants of Linear Operators</td>
<td>129</td>
</tr>
<tr>
<td>More on Rank, RowRank, and ColumnRank</td>
<td>130</td>
</tr>
<tr>
<td>Expansion by Minors and Cramer’s Rule</td>
<td>132</td>
</tr>
<tr>
<td>Additional Exercises</td>
<td>134</td>
</tr>
</tbody>
</table>
Chapter 5. The Diagonalization Problem 139
 5.1. Eigenvalues, Characteristic Polynomial, and Spectrum 139
 Factoring Polynomials 141
 Fundamental Theorem of Algebra 142
 The Quadratic Formula 144
 5.2. Eigenvalues and the Characteristic Polynomial 145
 Finding the Eigenspaces of \(T : V \to V \) 147
 Example: Rotation Matrices in \(\mathbb{R}^2 \) 150
 The Case of Distinct Eigenvalues 152
 5.3. Diagonalization and Limits of Operators 153
 Norms on Finite-Dimensional Spaces 153
 Multiplicative Properties of Norms on Matrix Space 154
 The Operator Norm \(\|T\|_{\text{op}} \) on Linear Operators and Matrices 155
 Equivalence of Norms on Finite-Dimensional Spaces 157
 Practical Calculations with Matrix Norms 158
 Convergence of Sequences and Series in Matrix Space 158
 Properties of Matrix Norms 159
 5.4. Application: Computing the Exponential \(e^A \) of a Matrix 160
 The Cauchy Convergence Criterion in Matrix Space 161
 Convergence of the Exponential Series 162
 Explicit Computation of \(e^A \) 162
 5.5. Application: Linear Systems of Differential Equations 165
 Example: Solving \(\frac{dx}{dt} = Ax \) 167
 5.6. Application: Matrix-Valued Geometric Series 169
 Convergence of Matrix-Valued Power Series 170
 Small Perturbations of Invertible Matrices 171
 Geometric Series for Nilpotent \(N \) 172
 Additional Exercises 172

Chapter 6. Inner Product Spaces 181
 6.1. Basic Definitions and Examples 181
 Euclidean Norms on \(\mathbb{R}^n \) and \(\mathbb{C}^n \) 182
 The Cauchy-Schwarz Inequality 184
 Hilbert-Schmidt Norm 186
 Polarization Identity 187
 Orthonormal Bases in Inner Product Spaces 187
 Bessel's Inequality 188
 6.2. Orthogonal Complements and Projections 190
 Orthogonal Projections on Inner Product Spaces 190
 The Gram-Schmidt Construction 192
 The Legendre Polynomials 195
 Fourier Series Expansions 196
 A Geometry Problem 199
 6.3. Adoints and Orthonormal Decompositions 200
 Diagonalization vs. Orthogonal Diagonalization 200
 Dual Spaces of Inner Product Spaces 201
The Adjoint Operator $T^* : W \to V$ 202
Linear Projections vs. Orthogonal Projections 204
Adjoint T^* vs. Transpose T^T 206
Computing an Operator Adjoint 206
Self-Adjoint, Unitary, and Normal Operators 207
6.4. Diagonalization in Inner Product Spaces 209
Orthogonal Diagonalization 209
Schur Normal Form 209
Diagonalizing Self-Adjoint and Normal Operators 212
Unitary Equivalence of Operators vs. Similarity 216
The Matrix Groups $U(n), SU(n), O(n), SO(n)$ 219
Change of Orthonormal Basis 221
Diagonalization over $\mathbb{K} = \mathbb{C}$: A Summary 222
6.5. Reflections, Rotations, and Rigid Motions on \mathbb{R}^n 222
The Group of Rigid Motions $M(n)$ 223
Reflections on Inner Product Spaces 224
Euler’s Theorem: Rotations on \mathbb{R}^3 226
Further Comments on Euler 228
6.6. Spectral Theorem for Vector and Inner Product Spaces 229
Spectral Theorem 230
Functions of Operators: e^T and \sqrt{T} Revisited 234
Computing a Spectral Decomposition 236
Determining the Spectral Projections P_λ 237
6.7. Positive Operators and Polar Decomposition 239
Positive Square Roots 240
Polar Decompositions $T = UP$ (Invertible T) 241
Computing the Polar Decomposition for Invertible $T : V \to W$ 243
The Singular Value Decomposition 244
Computing a Singular Value Decomposition 245
The General Polar Decomposition 246
Additional Exercises 248
Index 257