Contents

Chapter 1. Introduction 1
 1.1. Outline of the proof 4
 1.2. Outline of manuscript 8
 1.3. Other approaches 8
 1.4. Acknowledgements 10

Part 1. GEOMETRIC AND ANALYTIC RESULTS FOR RICCI FLOW WITH SURGERY 11

Chapter 2. Ricci flow with surgery 13
 2.1. The standard solution and surgery 14
 2.2. Main existence theorem 15
 2.3. Review of notation and definitions 17
 2.4. Geometric limits of Ricci flows 21

Chapter 3. Limits as $t \to \infty$ 25
 3.1. Preliminary estimates on curvature and volume 25
 3.2. Three propositions 29
 3.3. The hyperbolic pieces 30
 3.4. Locally volume collapsed part of the $(M_t, g(t))$ 39

Chapter 4. Local results valid for large time 41
 4.1. First local result 41
 4.2. Second local result 66
 4.3. A corollary 77

Chapter 5. Proofs of the three propositions 79
 5.1. Proof of Proposition 3.2.4 79
 5.2. Proof of Proposition 3.2.3 85
 5.3. Proof of Proposition 3.2.1 86

Part 2. LOCALLY VOLUME COLLAPSED 3-MANIFOLDS 93

Chapter 6. Introduction to Part II 95
 6.1. Seifert fibered manifolds and graph manifolds 95
 6.2. The statement 97
 6.3. Stronger results 99
CONTENTS

Chapter 7. The collapsing theorem
 7.1. First remarks
 7.2. The collapsing theorem
 7.3. Proof that Theorem 7.2.1 implies Theorem 6.2.1

Chapter 8. Overview of the rest of the argument

Chapter 9. Basics of Gromov-Hausdorff convergence
 9.1. Limits of compact metric spaces
 9.2. Limits of complete metric spaces
 9.3. Manifolds with curvature bounded below

Chapter 10. Basics of Alexandrov spaces
 10.1. Properties of comparison angles
 10.2. Alexandrov spaces of curvature ≥ 0
 10.3. Strainers
 10.4. Alexandrov balls
 10.5. The tangent cone
 10.6. Consequences of the existence of tangent cones
 10.7. Directional derivatives
 10.8. Blow-up results
 10.9. Gromov-Hausdorff limits of balls in the M_n

Chapter 11. 2-dimensional Alexandrov spaces
 11.1. Basics
 11.2. The interior
 11.3. The boundary
 11.4. The covering
 11.5. Transition between the 2- and 1-dimensional parts

Chapter 12. 3-dimensional analogues
 12.1. Regions of M near generic 2-dimensional points
 12.2. The global S^1-fibration
 12.3. Balls centered at points of ∂M_n
 12.4. The interior cone points
 12.5. Near almost flat boundary points
 12.6. Boundary points of angle $\leq \pi - \delta$
 12.7. Balls near open intervals
 12.8. Determination of the constants

Chapter 13. The global result
 13.1. Part of M close to intervals
 13.2. Part of M near 2-dimensional Alexandrov spaces
 13.3. Fixing the 3-balls and attaching solid cylinders
 13.4. ϵ-chains
13.5. The Seifert fibration containing $W_2 \setminus \cup_i U(C'_i)$ 230
13.6. Deforming the boundary of W_2 232
13.7. Removing solid tori and solid cylinders from W_2 239
13.8. Completion of the proof 241

Part 3. THE EQUIVARIANT CASE 243

Chapter 14. The equivariant case 245
14.1. The statement 245
14.2. Preliminary results on compact group actions 246
14.3. Actions on canonical neighborhoods 251
14.4. Equivariant Ricci flow with surgery 261
14.5. Proof of Theorem 14.1.4. 271

Bibliography 281
Glossary of symbols 283
Index 289