Contents

Preface xi

Part 1. Large graphs: an informal introduction 1

Chapter 1. Very large networks 3
 1.1. Huge networks everywhere 3
 1.2. What to ask about them? 4
 1.3. How to obtain information about them? 5
 1.4. How to model them? 8
 1.5. How to approximate them? 11
 1.6. How to run algorithms on them? 18
 1.7. Bounded degree graphs 22

Chapter 2. Large graphs in mathematics and physics 25
 2.1. Extremal graph theory 25
 2.2. Statistical physics 32

Part 2. The algebra of graph homomorphisms 35

Chapter 3. Notation and terminology 37
 3.1. Basic notation 37
 3.2. Graph theory 38
 3.3. Operations on graphs 39

Chapter 4. Graph parameters and connection matrices 41
 4.1. Graph parameters and graph properties 41
 4.2. Connection matrices 42
 4.3. Finite connection rank 45

Chapter 5. Graph homomorphisms 55
 5.1. Existence of homomorphisms 55
 5.2. Homomorphism numbers 56
 5.3. What hom functions can express 62
 5.4. Homomorphism and isomorphism 68
 5.5. Independence of homomorphism functions 72
 5.6. Characterizing homomorphism numbers 75
 5.7. The structure of the homomorphism set 79

Chapter 6. Graph algebras and homomorphism functions 83
 6.1. Algebras of quantum graphs 83
 6.2. Reflection positivity 88
6.3. Contractors and connectors 94
6.4. Algebras for homomorphism functions 101
6.5. Computing parameters with finite connection rank 106
6.6. The polynomial method 108

Part 3. Limits of dense graph sequences 113

Chapter 7. Kernels and graphons 115
 7.1. Kernels, graphons and stepfunctions 115
 7.2. Generalizing homomorphisms 116
 7.3. Weak isomorphism I 121
 7.4. Sums and products 122
 7.5. Kernel operators 124

Chapter 8. The cut distance 127
 8.1. The cut distance of graphs 127
 8.2. Cut norm and cut distance of kernels 131
 8.3. Weak and L_1-topologies 138

Chapter 9. Szemerédi partitions 141
 9.1. Regularity Lemma for graphs 141
 9.2. Regularity Lemma for kernels 144
 9.3. Compactness of the graphon space 149
 9.4. Fractional and integral overlays 151
 9.5. Uniqueness of regularity partitions 154

Chapter 10. Sampling 157
 10.1. W-random graphs 157
 10.2. Sample concentration 158
 10.3. Estimating the distance by sampling 160
 10.4. The distance of a sample from the original 164
 10.5. Counting Lemma 167
 10.6. Inverse Counting Lemma 169
 10.7. Weak isomorphism II 170

Chapter 11. Convergence of dense graph sequences 173
 11.1. Sampling, homomorphism densities and cut distance 173
 11.2. Random graphs as limit objects 174
 11.3. The limit graphon 180
 11.4. Proving convergence 185
 11.5. Many disguises of graph limits 193
 11.6. Convergence of spectra 194
 11.7. Convergence in norm 196
 11.8. First applications 197

Chapter 12. Convergence from the right 201
 12.1. Homomorphisms to the right and multicuts 201
 12.2. The overlay functional 205
 12.3. Right-convergent graphon sequences 207
 12.4. Right-convergent graph sequences 211