14
PETER SPRENT
REFERENCES
R. J. Adcock (1877), Note on the method of/east squares, The Analyst 4, 183-184.
R. J. Adcock ( 1878), A problem in least squares, The Analyst 5, 53-54.
T. W. Anderson ( 1984 ), Estimating linear statistical relationships, Ann. Statist. 12, 1-45.
V. D. Barnett ( 1969), Simultaneous pairwise linear structural relationships, Biometrics 25,
129-142.
J. Berkson (1950), Are there two regressions? J. Amer. Statist. Assoc. 45, 164-180.
P. J. Bickel andY. Ritov ( 1987), Efficient estimation in the errors-in-variables model, Ann.
Statist. 15, 513-540.
R. J. Carroll and P. P. Gallo ( 1982), Some aspects of robustness in the functional errors-in-
variables regression model, Comm. Statist. Theory Methods 11, 2573-2585.
B. Dent ( 1935), On observations of points connected by a linear relation, Proc. Phys. Soc. 47,
92-106.
G. R. Dolby ( 1976), The ultra-structural relation: a synthesis of the functional and structural
relations, Biometrika 63, 39-50.
A. S. C. Ehrenberg ( 1982), A primer in data reduction, John Wiley, Chichester.
W. A. Fuller ( 1987), Measurement error models, John Wiley, New York.
R. C. Geary ( 1949), Determinations of linear relations between systematic parts of variables
with errors of observations the variances of which are Unknown, Econometrica 17, 30-58
L. J. Gieser ( 1985), A note on G. R. Dolby's Ultrastructural model, Biometrika 72, 117-124.
L. J. Gieser and J. T. Hwang ( 1987), The nonexistence of100( 1-a
)%
confidence sets of finite
expected diameter in errors-in-variables and related models, Ann. Statist. 15, 1351-1362.
L. J. Gieser and G. S. Watson ( 1973), Estimation of a linear transformation, Biometrika 60,
525-534.
M. G. Kendall ( 1951 ), Regression. Structure and functional relationship l, Biometrika 38,
11-25.
M. G. Kendall ( 1952), Regression. Structure and Functional Relationship II, Biometrika 39,
96-108.
M. G. Kendall and A. Stuart ( 1961 ), The advanced theory of statistics, Vol. II, Griffin, London.
J. Kiefer and J. Wolfowitz (1956), Consistency of the maximum likelihood estimator in the
presence of infinitely many incidental parameters, Ann. Math. Statist. 27, 887-906.
C. H. Kummel ( 1879), Reduction of observed equations which contain more than one observed
quantity, The Analyst 6, 97-105.
D. V. Lindley ( 1947), Regression lines and the linear functional relationship, J. Roy. Statist.
Soc. supplement 9, 218-244.
D. V. Lindley and G. M. EI-Sayyad ( 1968), The Bayesian estimation of a linear functional
relationship, J. Roy. Statist. Soc. Ser. B. 30, 190-202.
A. Madansky ( 1959), The fitting of straight lines when both variables are subject to error, J.
Amer. Statist. Assoc. 62, 819-841.
P. A. P. Moran (1971 ), Estimating functional and structural relationships, J. Multivariate
Anal. 1, 232-255.
R. Morton ( 1981 ), Efficiency of estimating equations and the use of pivots, Biometrika 68,
227-233.
J. Neyman and E. L. Scott ( 1948), Consistent estimates based on partially consistent obser-
vations, Econometrica 16, 1-32.
J. Neyman and E. L. Scott ( 1951 ), On certain methods of estimating the linear structural
relation, Ann. Math. Statist. 22, 352-361.
W. M. Patefield ( 1978), The unreplicated ultra-structural relation: large sample properties,
Biometrika 65, 535-540.
K. Pearson ( 190 I), On lines and planes of closest fit to systems of points in space, Philosoph-
ical Magazine 2, 559-572.
0. Reiersel ( 1945), Confluence analysis by means of instrumental sets of variables, Ark. Mat.
Astronomique Fysics 32, 1-119.
0. Reiersel ( 1950), Identifiability of a linear relation between variables which are subject to
error, Econometrica 18, 375-389.
C. F. Roos ( 1937), A general invariant criterion of fit for lines and planes where all variates
Previous Page Next Page