CONTENTS Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Part I Theory Invited Lectures Domain decomposition methods using modified basis functions V.I. Agoshkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Uniform convergence estimates for multigrid V-cycle algorithms with less than full elliptic regularity J.H. Bramble, I.E. Pasciak................................................ 17 A three-field domain decomposition method F. Brezzi, L.D. Marini..................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Self-adaptive coupling of mathematical models and/or numerical methods C. Canuto, A. Russo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Noniterative domain decomposition for second order hyperbolic problems CN. Dawson, T.F. Dupont..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Some recent results on Schwarz type domain decomposition algorithms M. Dryja, OB Widlund.................................................... 53 Overlapping domain decomposition methods for parabolic problems Yu.A. Kuznetsov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Domain decomposition and multilevel PCG method for solving 3-D fourth order problems J. Sun.................................................................... 71 vii
Previous Page Next Page