FINITENESS OF SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES 25

(Pa2] Papadima, S.,

The Rational Homotopy of Thom Spaces and the Smoothing of

Homology Classes, Comm. Math. Helv.,

60 (1985), 601-614.

(Sal] Sasao, S.,

Self-Homotopy Equivalences of the Total Spaces of a Sphere Bundle

over a Sphere,

Kodai J. Math., 7 (1984), 177-190.

(Sa2

]

Sasao, S.,

On Self-Homotopy Equivalences of S 3 -Principal Bundles over

sn,

Kodai J. Math., 8 (1985), 285-295.

[Sh] Shiga, H.,

Rational Homotopy Type and Self Maps,

J.

Math.

Soc. Japan, 31

(1979), 427-434.

[Tsd

Tsukiyama, K.,

Note on Self-Maps Inducing the Identity Automorphism of

Homotopy Groups,

Hirosh. Math. J., 5 (1975), 215-222.

[Ts2]

Tsukiyama, K.,

Note on Self-Homotopy Equivalences of the Twisted Principal

Fibrations, Mem. Fac.

Edu. Shimane

Univ.,

11 (1977), 1-8.

[Ts3]

Tsukiyama, K.,

Self-Homotopy Equivalences of a Space with Two Non-vani-

shing Homotopy Groups, Proc. Amer.

Math. Soc., 79 (1980), 134-138.

[Wi]

Wilkerson, C.,

Applications of Minimal Simplicial Groups, Topology,

15

(1976), 115-130.

[Za] Zabrodsky, A.,

Endomorphisms in the Homotopy Category, Cont.

Math.

A.

M. S., 44 (1985), 227-277.

Department of Mathematics

Dartmouth College

Hanover, NH 03755

USA

Department of Mathematics

Cleveland State University

Cleveland, OH 44115

USA

(Pa2] Papadima, S.,

The Rational Homotopy of Thom Spaces and the Smoothing of

Homology Classes, Comm. Math. Helv.,

60 (1985), 601-614.

(Sal] Sasao, S.,

Self-Homotopy Equivalences of the Total Spaces of a Sphere Bundle

over a Sphere,

Kodai J. Math., 7 (1984), 177-190.

(Sa2

]

Sasao, S.,

On Self-Homotopy Equivalences of S 3 -Principal Bundles over

sn,

Kodai J. Math., 8 (1985), 285-295.

[Sh] Shiga, H.,

Rational Homotopy Type and Self Maps,

J.

Math.

Soc. Japan, 31

(1979), 427-434.

[Tsd

Tsukiyama, K.,

Note on Self-Maps Inducing the Identity Automorphism of

Homotopy Groups,

Hirosh. Math. J., 5 (1975), 215-222.

[Ts2]

Tsukiyama, K.,

Note on Self-Homotopy Equivalences of the Twisted Principal

Fibrations, Mem. Fac.

Edu. Shimane

Univ.,

11 (1977), 1-8.

[Ts3]

Tsukiyama, K.,

Self-Homotopy Equivalences of a Space with Two Non-vani-

shing Homotopy Groups, Proc. Amer.

Math. Soc., 79 (1980), 134-138.

[Wi]

Wilkerson, C.,

Applications of Minimal Simplicial Groups, Topology,

15

(1976), 115-130.

[Za] Zabrodsky, A.,

Endomorphisms in the Homotopy Category, Cont.

Math.

A.

M. S., 44 (1985), 227-277.

Department of Mathematics

Dartmouth College

Hanover, NH 03755

USA

Department of Mathematics

Cleveland State University

Cleveland, OH 44115

USA