COMPLEX COBORDISM OF HILBERT MANIFOLDS
19
References
[1] I. N. Bernstein, I. M. Gelfand & S. I. Gelfand, Schubert cells and cohomology of the spaces
G / P, Russian Math. Surveys 28 (1973), 1-26.
[2] P. Bressler & S. Evens, The Schubert calculus, braid relations, and generalized cohomology,
Trans. Amer. Math. Soc. 317 (1990), 799-811.
[3] P. Bressler & S. Evens, Schubert calculus in complex cobordism, Trans. Amer. Math. Soc.
331 (1992), 799-813.
[4] J. B. Conway, A Course in Functional Analysis, Springer-Verlag (1984).
[5] M. Demazure, Desingularization des varietes de Schubert, Ann. Ecole Norm. Sup., 7 (1974),
53-58.
[6] E. Dyer, Cohomology Theories, Benjamin (1969).
[7] J. Eells & K. D. Elworthy, On the differential topology of Hilbert manifolds, in 'Global
Analysis', Proc. Symp. Pure Math. 15 (1970), 41-44.
[8] J. Eells & J. McAlpin, An approximate Morse-Sard theorem, J. Math. Mech. 17 (1968),
1055-1064.
[9] 'Global Analysis', Proc. Symp. Pure Math. 15 (1970).
[10] K. Janich, Topology, Springer-Verlag (1981).
[11] N.H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965),
19-30.
[12] S. Lang, Differential Manifolds, Springer-Verlag (1985).
[13] P. W. Michor, Manifolds of Differentiable Mappings, Shiva Publishing Limited (1980).
[14] J. W. Milnor & J. D. Stasheff, Characteristic Classes, Princeton University Press (1974).
[15] C. Ozel, On the Complex Cobordism of Flag Varieties Associated to Loop Groups, PhD
thesis, University of Glasgow (1998).
[16] A. Pressley & G. Segal, Loop Groups, Oxford University Press (1986).
[17] D. G. Quillen, Elementary proofs of some results of cobordism theory using Steenrod opera-
tions, Adv. in Math. 7 (1971), 29-56.
[18] F. Quinn, Transversal approximation on Banach manifolds, in 'Global Analysis', Proc. Symp.
Pure Math. 15 (1970), 213-222.
[19] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. , 87 (1965)
861-866.
[20] R. Thorn, Quelques proprietes des varietes differentiables, Comm. Math. Helv. 28 (1954),
17-86.
[21] E. Zeidler, Applied Functional Analysis, Main Principles and Their Applications, Springer-
Verlag (1995).
MATHEMATICS DEPARTMENT, GLASGOW UNIVERSITY, GLASGOW G12 8QW, SCOTLAND.
E-mail address:
a. bakerClmaths. gla. ac. uk
URL:
http:/
/www.maths.gla.ac.uk/~ajb
AIBU GOLKOY KAMPUSU, BOLU 14200, TURKEY.
E-mail address:
cenapCltore . i bu. edu. tr
Previous Page Next Page