14 CARLOS A. BERENSTEIN
[Nl]:
A.
I.
Nachman, Reconstruction from boundary measurements, Annals
Math. 128 (1988), 531-576.
[N2]:
A.
I.
Nachman, Global uniquemenss for a two-dimensional inverse
boundary value problem, Annals Math. 143 (1996), 71-96.
[Na]:
F. Natterer, "The mathematics of computerized tomography", Wiley,
1986.
[P]:
S.
K.
Patch, ASL Technote 99-24, G. E. Medical Systems.
[Q]:
E. T. Quinto, Singularities of the x-ray transform and limited data
tomography in R
2
and R
3
,
SIAM J. Math. Anal. 24 (1993), 1215-1225.
[QCK]: E. T. Quinto, M. Cheney, and P. Kuchment, eds., "Tomography,
impedance imaging, and integral geometry", Lect. Appl. Math. 30,
Amer. Math. Soc., 1994.
[R]:
B. Rubin, Inversion and characterization of Radon transforms via con-
tinuous wavelet transforms, Hebrew Univ. TR 13, 1995/96.
[SJ:
F. Santosa, Inverse problem holds key to safe, continuous imaging,
SIAM News, July 1994, 1 and 16-18.
[Si]:
S. Siltanen, Electrical impedance tomography and Fadelo Giren func-
tions, Ann. Acad. Sci. Fennicae, Dissertationes 121, 1999.
[U]:
G. Uhlmann, Developments in inverse problems since Calderon's foun-
dational paper, Harmonic ap.alysis and partial differential equations, U.
Chicago Press, 1999, 295-345.
[W]:
D. Walnut, Applications of Gabor and wavelet expansions to the Radon
transform, in "Probabilistic and stochastic methods in analysis" , J. Byrnes
et al., ed., Kluwer, 1992,187-205.
[ZCMB]: Y. Zhang, M. A. Coplan,
J.
H. Moore and C. A. Berenstein,
Computerized tomographic imaging for space plasma physics,
J. Appl.
Phys. 68 (1990), 5883-5889.
Department of Mathematics and the Institute for Systems Research, University
of Maryland.
Current address:
INSTITUTE FOR SYSTEMS RESEARCH,
2221 A. V.
WILLIAMS BUILDING,
UNI-
VERSITY OF MARYLAND, COLLEGE PARK, MARYLAND
20742
E-mail address:
carloslllisr. umd. edu
Previous Page Next Page