D. Dawson, I. Dinwoodie, C. Dunkl, W. Ehm, S. Evans, J. Faraut, U. Franz,
D. Geiger, S. Hedayat, I. Helland, T. Kollo, S. Lalley, H. Massam, B. McNeney,
R. Mukerjee, H. Neudecker, M. Perlman, F.'Ruymgaart, and P. Sarnak. We also ac-
knowledge the support of the Series managing editor,
Dennis DeTurck. Our sincere
appreciation goes to the authors, for their timely cooperation
during the editorial
We feel that the twenty-three contributions that
follow give an excellent over-
view of current opportunities and directions in algebraic
methods in statistics and
P. Diaconis,
Group representation in probability and statistics,
IMS, Hayward, Califor-
nia, 1988.
M. L. Eaton,
Group invariance applications in statistics,
Hayward, Califor-
nia, 1989.
R. H. Farrell (ed.),
Multivariate calculation,
Springer-Verlag, New York, NY, 1985.
U. Grenander,
Probabilities on algebraic structures,
Wiley, New York,
NY, 1963.
E. J. Hannan,
Group representations and applied probability,
Journal of Applied Prob-
ability 2 (1965), 1-68.
A. T. James,
The relationship algebra of an experimental design,
of Mathemat-
ical Statistics 28 (1957), 993-1002.
S. L. Lauritzen,
Graphical models,
Oxford University
Press, New York, NY, 1996.
V. Lakshminarayanan, R. Srudhar,
and R. Jagannathan,
Lie algebraic treatment of
dioptric power and optical
J. Optical Society of America, A 15 (1998),
L. Nachbin,
The Haar integral,
Van Nostrand, Princeton, N.J., 1965.
M. D. Perlman,
Group symmetry covariance models,
Statistical Science 2 (1987), 421-
Pistone, E. Riccomagno, and P. Wyinn,
Algebraic statistics: Computational com-
mutative algebra in statistics,
Chapman & Hall/CRC, Boca Raton, FL, 2000.
R. A. Wijsman,
Invariant measures on groups and their use in statistics,
IMS, Hayward,
California, 1990.
Marlos A. G. Viana
Chicago, Illinois
Donald St. P. Richards
Charlottesville, Virginia
July 26, 2001
Previous Page Next Page