8
KINETSU ABE, DIMITAR GRANTCHAROV, AND GUEO GRANTCHAROV
[3] K. Becker, M. Becker, K. Dasgupta, P. Green,
Compactifications of Heterotic Theory on
non-Kiihler complex manifolds,
hep-th/0301161.
[4] K. Becker, K. Dasgupta,
Heterotic strings with torsion, J.
High Energy Phys. 11 (2002) 006,
30 pp.
[5] D. E. Blair, G.Ludden, K.Yano,
Geometry of complex manifolds similar to Calabi-Eckman
manifolds, J.
Diff. Geom. 9 (1974), 263-274.
[6] L. Berard-Bergery,
Certains fibres
a
courbure de Ricci positive,
C.
R.
Acad. Sci. Paris 286
(1978), 929-931.
[7] V. Gulliemin,
Moment maps and combinatorial invariants of Hamiltonian rn-spaces,
Progress in Math. 122, Birkhiiuser, Boston (1994).
[8]
R.
Goldstein, L. Linninger,
Six manifolds with free S
1
action,
Lect. Notes Math. 298 (1972),
316-323.
[9] S.Lopez di Medrano, A.Verjovsky,
A new family of complex, compact, non symplectic
manifolds,
Bol Soc. Brasil. Mat. 28 (1997), 243-267.
[10] L.Meersseman,
A new geometric construction of compact complex manifolds in any dimen-
sion,
Math. Ann. 317 (2000), 79-115.
[11] L.Meersseman, A.Verjovsky,
Holomorphic principal bundles over projective toric varietes,
preprint 2002.
[12] H.C.Wang,
Closed manifolds with homogeneous complex structure,
Amer.
J.
Math.
76
(1955), 1-32.
[13] K. Yano, M. Kon,
Structures on manifolds,
World Scientific (1984).
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CT 06269, USA
E-mail address:
abeCmath. uconn. edu
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CA 92521, USA
E-mail address:
grandimCmath. ucr. edu
DEPARTMENT OF MATHEMATICS, FLORIDA INTERNATIONAL UNIVERSITY, MIAMI, FL 33199, USA
E-mail address:
grantchgCfiu.edu
Previous Page Next Page