A BEEMIAN SAMPLER: 1966-2002
27
9. R. Bartnik, Remarks on cosmological space-times and constant mean curvature surfaces,
Commun. Math. Phys. 117 (1988), 615--624.
10. J. K. Beem, Pseudo-Riemannian manifolds with totally geodesic bisectors, Proc. Amer. Math.
Soc. 49 (1975), 212-215.
11. J.
K.
Beem, Globally hyperbolic space-times which are timelike Cauchy complete, Gen. Rei.
Grav.
7
(1976), 339-344.
12. J. K. Beem, Conformal changes and geodesic completeness, Commun. Math. Physics 49
(1976)' 179-186.
13. J.
K.
Beem, Some examples of incomplete space-times, Gen. Rei. Grav.
7
(1976), 339-344.
14. J.
K.
Beem, Quasi-hyperbolic Lorentz-Poincare planes, Differential topology-geometry and
related fields and their applications to the physical sciences and engineering, vol. 76, Teubner
Texte in Mathematik, 1985, pp. 26-38.
15. J. K. Beem, Stability of Geodesic Incompleteness, in Differential Geometry and Mathemat-
ical Physics: AMS-CMS Special Session on Geometric Methods in Mathematical Physics,
Contemporary Mathematics, vol. 170, American Mathematical Society, 1994, pp. 1-11.
16.
J.
K. Beem and P. E. Ehrlich, Distance lorentzienne finie et geodesiques f-causales in-
completes, C. R. Acad. Sci. Paris Ser. A
581
(1977), 1129-1131.
17. J. K. Beem and P. E. Ehrlich, Conformal deformation, Ricci curvature and energy conditions
on globally hyperbolic space-times, Math. Proc. Camb. Phil. Soc.
84
(1978), 159-175.
18. J.
K.
Beem and P. E. Ehrlich, The space-time cut locus, Gen. Rei. Grav.
11
(1979), 89-103.
19. J. K. Beem and P. E. Ehrlich, Cut points, conjugate points and Lorentzian comparison theo-
rems, Math. Proc. Camb. Phil. Soc.
86
(1979), 365-384.
20. J.
K.
Beem and P. E. Ehrlich, A Morse index theorem for null geodesics, Duke Math.
J. 46
(1979), 561-569.
21. J.
K.
Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel-Dekker, New York, 1981.
22. J.
K.
Beem and P. E. Ehrlich, Stability of geodesic incompleteness for Robertson- Walker
space-times, Gen. Rei. and Grav.
13
(1981), 239-255.
23. J.
K.
Beem and P. E. Ehrlich, Geodesic completeness and stability, Math. Proc. Camb. Phil.
Soc.
102
(1987), 319-328.
24. J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, 2nd Edition,
Marcel-Dekker, New York, 1996.
25. J. K. Beem, P. E. Ehrlich, S. Markvorsen, and G. Galloway, Decomposition theorems for
Lorentzian manifolds with nonpositive curvature, J. Diff. Geom.
22
(1985), 29-42.
26. J.
K.
Beem, P. E. Ehrlich, and T. G. Powell, Warped product manifolds in relativity, in Selected
Studies: Physics-Astrophysics, Mathematics, History of Science, North-Holland, Amsterdam,
1982, pp. 41-56.
27. J. K. Beem and S. G. Harris, The generic condition is generic, Gen. Rei. and Grav.
25
(1993),
939-962.
28. J.
K.
Beem and S. G. Harris, Nongeneric null vectors, Gen. Rei. and Grav.
25
(1993), 963-973.
29. J. K. Beem and M.A. Kishta, On genemlized indefinite Finsler spaces, Indiana Univ. Math.
J. 23
(1973/74), 845-853.
30. J.
K.
Beem and P. E. Parker, Whitney stability of solvability, Pacific J. Math.
116
(1985),
11-23.
31. J. K. Beem and P. E. Parker, Pseudoconvexity and geodesic connectedness, Annali Math.
Pura. Appl.
155
(1989), 137-142.
32. J. K. Beem and P. E. Parker, Sectional curvature and tidal accelemtions, J. Math. Phys.
31
(1990), 819-827.
33. J. K. Beem and T. Powell, Geodesic completeness and maximality in Lorentzian warped
products, Tensor N.S. 39 (1982), 31-36.
34. J.
K.
Beem and P. Y. Woo, Doubly Timelike Surfaces, Memoir 92, Amer. Math. Soc. (1969).
35. A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
36. R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc.
145
(1969), 1-49.
37. H. Busemann, Uber die Geometrien, in denen die "Kreise mit unendlichem Radius" die
kurzesten Linien sind, Math. Annalen
106
(1932), 14Q-160.
38. H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
39. H. Busemann, Timelike spaces, Dissertationes Math. Rozprawy Mat.
53
(1967).
Previous Page Next Page