Bibliography
[BF) Baker, T., Forrester, P.: Isomorphisms of type A affine Heeke algebras and multivariable
orthogonal polynomials, Pacific J. Math. 194 (2000), no. 1, 19-41.
[C1) Cherednik, I.: Double affine Heeke algebras and Macdonald conjectures, Ann. Math.
141 (1995), 191-216.
[C2) Cherednik, I.: Macdonald's evaluation conjectures and difference Fourier transform,
Invent. Math. 122 (1995), 119-145.
[C3) Cherednik, I.: Intertwining operators of double affine Heeke algebras, Selecta Math. 3
(1997), 459-495.
[vD) van Diejen, J.F.: Self-dual Koornwinder-Macdonald polynomials, Invent. Math. 126
(1996), 319-339.
[Du) Dunkl, C.: Differential-difference operators associated to reflection groups, Trans.
Amer. Math. Soc. 311 (1989), 167-183.
[EK1) Etingof, P.I., Kirillov, A. Jr.: Macdonald polynomials and representations of quantum
groups, Math. Res. Letters
1
(1994), 279-296.
[EK2) Etingof, P.I. and Kirillov, A. Jr.: Representation-theoretic proof of the inner product
and symmetry identities for Macdonald's polynomials, Compos. Math 102 (1996), 179-
202.
[ES) Etingof, P.I., Styrkas, K.L.: Algebraic integrability of Macdonald operators and repre-
sentations of quantum groups, Compos. Math. 114 (1998), 125-152.
[F) Frobenius, C.: Uber die Charaktere der Symmetrischen Gruppen, Sitz. Konig. Preuss.
Akad. Wiss. Berlin 22 (1900), 516-534. (Ges. Abhand. 3, 148-166)
[FJMM1) Feigin B., Jimbo M., Miwa T. and Mukhin E.: A differential ideal of symmetric poly-
nomials spanned by Jack polynomials at {3 = -(r- 1)/(k
+
1), Int. Math. Res. Notice
23
(2002), 1223-1237.
[FJMM2) Feigin B., Jimbo M., Miwa T. and Mukhin E.: Symmetric polynomials vanishing at the
diagonals shifted by roots of unity, Int. Math. Res. Not. 18 (2003), 999-1014.
[FR) Frenkel E. and Reshetikhin N.: Deformation of W-algebras associated to simple Lie
algebras, Comm. Math. Phys. 197 (1998), no. 1, 1-32.
[G) Green, J.: The characters of finite general linear groups, Trans. Amer. Math. Soc.
80
(1955), 402-447.
[GH) Garsia, A. and Haiman, M.: A graded representation model for Macdonald's polyno-
mials, Proc. Nat. Acad. Sci. USA 90 (1993), 3607-3610.
[Gus) Gustafson R.A.: Some q-beta and Mellin-Barnes integrals on compact Lie groups and
Lie algebras Trans. Amer. Math. Soc. 341:1 (1994) 69-119.
[H) Hall, P.: The algebra of partitions, Proc. 4th Canad. Math. Conf. (Banff) {1959)
[H1) Haiman, M.: Hilbert schemes, polygraphs and Macdonald's positivity conjecture, J.
Amer. Math. Soc. 14 (2001), 941-1006.
[H2) Haiman, M.: Vanishing theorems and character formulas for the Hilbert scheme of
points in the plane, Invent. Math. 149 (2002), 371-407.
[Ha) Haldane, F.D.M.: Exact Jastrow-Gutzwiller resonating-valence-bond ground state of
the spin-1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange, Phys.Rev.Lett.
60 (1988), 635-638.
[HO) Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I-IV, Com-
pos. Math. 64, 67 (1987), (1988), 329-352, 353-373, 21-49, 191-209.
[I) Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math.
J. 116 (2003), 299-318.
XV
Previous Page Next Page