P. Bieliavsky, P. Bonneau, and Y. Maeda, Universal deformation formulae for
three-dimensional solvable Lie groups, Quantum field theory and noncommutative
geometry, Lecture Notes in Phys., vol. 662, Springer, Berlin, 2005, pp. 127-141
(math. QA/0308188).
P. Bieliavsky, M. Cahen, and S. Gutt, Symmetric symplectic manifolds and deforma-
tion quantization, Modern group theoretical methods in physics (Paris, 1995), Math.
Phys. Stud., vol. 18, Kluwer Acad. Pub!., Dordrecht, 1995, pp. 63-73.
P. Bieliavsky, S. Detournay, P. Spindel, and M. Rooman, Star products on extended
massive non-rotating BTZ black holes, J. High Energy Phys. (2004), no. 6, 031, 25 pp.
(electronic) (hep-th/0403257).
P. Bieliavsky andY. Maeda, Convergent star product algebras on "ax+b", Lett. Math.
Phys. 62 (2002), no. 3, 233-243 (math.QA/0209295).
P. Bieliavsky and M. Massar, Oscillatory integral formulae for left-invariant star prod-
ucts on a class of Lie groups, Lett. Math. Phys. 58 (2001), no. 2, 115-128.
P. Bonneau, M. Gerstenhaber, A. Giaquinto, and D. Sternheimer, Quantum groups and
deformation quantization: explicit approaches and implicit aspects, J. Math. Phys. 45
(2004), no. 10, 3703-3741.
M. Cahen and M. Parker, Pseudo-Riemannian symmetric spaces, Mem. Amer. Math.
(1980), no. 229, iv+108.
V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press,
Cambridge, 1995, Corrected reprint of the 1994 original.
L. Claessens and S. Detournay, Solvable symmetric black hole in anti-de Sitter spaces,
J. Geom. Phys. 57 (2007), 991-998 (math.DG/0510442).
J.M. Cline, Baryogenesis, Lectures at Les Houches Summer School Session 86: Particle
Physics and Cosmology: the Fabric of Spacetime, 7-11 Aug. 2006, hep-ph/0609145.
A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.
A. Connes, Noncommutative Geometry and the standard model with neutrino mixing,
JHEP 0611 (2006) 081 (hep-th/0608226).
A. Connes, A.H. Chamseddine, and M. Marcolli, Gravity and the standard model with
neutrino mixing, hep-th/0610241.
A. Connes and M. Dubois-Violette, Moduli space and structure of noncommutative
3-spheres, Lett. Math. Phys. 66 (2003), no. 1-2, 91-121 (math.QA/0511337).
A. Connes, M. Flato, and D. Sternheimer, Closed star products and cyclic cohomology,
Lett. Math. Phys. 24 (1992), no. 1, 1-12.
A. Connes and G. Landi, Noncommutative manifolds, the instanton algebra
and isospectral deformations, Comm. Math. Phys.
(2001), no. 1, 141-159
(math. QA/0011194).
A. Connes and H. Moscovici, Rankin-Cohen brackets and the Hopf algebra of transverse
geometry, Mosc. Math. J. 4 (2004), no. 1, 111-130, 311 (math.QA/0304316).
G. Dito and D. Sternheimer, Deformation quantization: genesis, developments and
metamorphoses, Deformation quantization (Strasbourg, 2001), IRMA Lect. Math.
Theor. Phys., vol. 1, de Gruyter, Berlin, 2002, pp. 9-54 (math.QA/0201168).
M. Flato, Deformation view of physical theories, Czechoslovak J. Phys. B 32 (1982),
no. 4, 472-475.
M. Flato and C. Fronsdal, Composite electrodynamics, J. Geom. Phys. 5 (1988), no. 1,
M. Flato, C. Fr0nsdal, and D. Sternheimer, Singletons, physics in AdS universe and
oscillations of composite neutrinos, Lett. Math. Phys. 48 (1999), no. 1, 109-119, Moshe
Flato (1937-1998). See also hep-th/9901043.
M. Flato, L. K. Hadjiivanov, and
T. Todorov, Quantum deformations of singletons
and of free zero-mass fields, Found. Phys. 23 (1993), no. 4, 571-586.
J. Frohlich, 0. Grandjean and A. Recknagel, Supersymmetric quantum theory
and non-commutative geometry. Comm. Math. Phys. 203 (1999), no. 1, 119-184
C. Fr0nsdal, Singletons and neutrinos, Lett. Math. Phys. 52 (2000), no. 1, 51-59,
Conference Moshe Flato 1999 (Dijon) (hep-th/9911241).
V. Gayral, Deformations isospectrales non compactes et theorie quantique des champs,
Thesis CPT Aix-Marseille I, 2005 (hep-th/0507208).
Previous Page Next Page