24
[Ger64]
[GZ98]
[GR03]
[HNWJ
[Hoo06]
[Huy82]
[Kna01]
[Lic82]
[Loo69]
[PS06]
[Puk90]
[Rie93]
[SS07]
[Sta98]
[St05]
[St07]
[vN31]
[Xu93]
[Zag94]
P. BIELIAVSKY, L. CLAESSENS, D. STERNHEIMER, ANDY. VOGLAIRE
M. Gerstenhaber,
On the deformation of rings and algebras,
Ann. of Math. (2) 79
(1964), 59-103.
A. Giaquinto and J.J. Zhang,
Bialgebra actions, twists, and universal deformation
formulas,
J. Pure Appl. Algebra 128 (1998), no. 2, 133-151 (hep-th/9411140).
S. Gutt and J. Rawnsley,
Natural star products on symplectic manifolds and quantum
moment maps,
Lett. Math. Phys. 66 (2003), no. 1-2, 123-139 (math.SG/0304498).
J.G. Heller, N. Neumaier, and S. Waldmann,
A C*-Algebraic Model for Locally Non-
commutative Spacetimes,
math. QA/0609850.
G. 't Hooft,
The black hole horizon as a dynamical system,
Internat. J. Modern Phys.
D 15 (2006), no. 10, 1587-1602 (gr-qc/0606026).
T. V. Huynh,
Invariant-quantization associated with the affine group,
J. Math. Phys.
23 (1982), no. 6, 1082-1087.
A. W. Knapp,
Representation theory of semisimple groups,
Princeton Landmarks in
Mathematics, Princeton University Press, Princeton, NJ, 2001, An overview based on
examples, Reprint of the 1986 original.
A. Lichnerowicz,
Deformations d'algebres associees
a
une variete symplectique (les
*v-produits),
Ann. Inst. Fourier, Grenoble 32 (1982), 157-209.
0.
Loos,
Symmetric spaces. I: General theory,
W. A. Benjamin, Inc., New York-
Amsterdam, 1969.
M. Paschke and A. Sitarz,
Equivariant Lorentzian Spectral Triples,
math-ph/0611029.
L. Pukanszky,
On a property of the quantization map for the coadjoint orbits of con-
nected Lie groups,
The orbit method in representation theory (Copenhagen, 1988),
Progr. Math., vol. 82, Birkhauser Boston, Boston, MA, 1990, pp. 187-211.
M. Rieffel,
Deformation quantization for actions of
R
d,
Mem. Amer. Math. Soc. 106
(1993), no. 506, x+93.
N. Sahu and U. Sarkar,
Predictive model for dark matter, dark energy, neutrino masses
and leptogenesis at the Te V scale,
hep-ph/0701062 (in press in Phys. Rev. D).
H. Steinacker,
Finite-dimensional unitary representations of quantum anti-de Sit-
ter groups at roots of unity,
Comm. Math. Phys. 192 (1998), no. 3, 687-706
(q-alg/9611009).
D. Sternheimer,
Quantization is deformation.
Noncommutative geometry and repre-
sentation theory in mathematical physics, 331-352, Contemp. Math. 391, Amer. Math.
Soc., Providence, RI, 2005.
D. Sternheimer,
The geometry of space-time and its deformations, from a physi-
cal perspective,
From Geometry to Quantum Mechanics - in honor of Hideki Omori
(Y.
Maeda, P. Michor, T. Ochiai, and A. Yoshioka, eds.), Progress in Mathematics
series, no. 252, 2007, pp. 287-301.
J. von Neumann,
Die Eindeutigkeit der Schodingerschen Operatoren,
Math. Ann 104
(1931), 570-578.
P.
Xu,
Poisson manifolds associated with group actions and classical triangular r-
matrices,
J. Funct. Anal. 112 (1993), no. 1, 218-240.
D. Zagier,
Modular forms and differential operators,
Proc. Indian Acad. Sci. Math.
Sci. 104 (1994), no. 1, 57-75, K. G. Ramanathan memorial issue.
UNIVERSITE CATHOLIQUE DE LOUVAIN, DEPARTEMENT DE MATHEMATIQUES,
CYCLOTRON 2, B-1348 LOUVAIN-LA-NEUVE, BELGIUM
CHEMIN DU
E-mail address:
bieliavsky claessens voglaire
~math.
ucl. ac. be
INSTITUT DE MATHEMATIQUES DE BOURGOGNE, UNIVERSITE DE BOURGOGNE, BP 47870,
F-21078 DIJON CEDEX, FRANCE
Current address:
Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,
Yokohama, 223-8522 Japan
E-mail address:
Daniel.
Sternheimer~u-bourgogne.
fr
Previous Page Next Page