COHEN-LENSTRA FOR QUADRATIC FUNCTION FIELDS 7 [13] Chris Hall, Big symplectic or orthogonal monodromy modulo£, Duke Math. J. 141 (2008), no. 1, 179-203. [14] Luc Illusie, Theorie de Brauer et caracteristique d'Euler-Poincare (d'apres P. Deligne), The Euler-Poincare characteristic (French), Asterisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 161-172. [15] Nicholas M. Katz, Sums of Betti numbers in arbitrary characteristic, Finite Fields Appl. 7 (2001), no. 1, 29-44. [16] Nicholas M. Katz and Peter Sarnak, Random matrices, Probenius eigenvalues, and mon- odromy, American Mathematical Society, Providence, RI, 1999. [17] E. Kowalski, The large sieve, monodromy and zeta functions of curves, J. Reine Angew. Math. 601 (2006), 29-69. [18] G. I. Lehrer, The l-adic cohomology of hyperplane complements, Bull. London Math. Soc. 24 (1992), no. 1, 76-82. [19] H. W. Lenstra, Jr., J. Pila, and Carl Pomerance, A hyperelliptic smoothness test. I, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 397-408. [20] Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), no. 3, 649-673. [21] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematis- chen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer- Verlag, Berlin, 1992. [22] Allison M. Pacelli, Abelian subgroups of any order in class groups of global function fields, J. Number Theory 106 (2004), no. 1, 26-49. E-mail address: j. achterl!lco1ostate. edu DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, CO 80523 URL: http: I /www. math. colostate. edu/ ~achter
Previous Page Next Page