COHEN-LENSTRA FOR QUADRATIC FUNCTION FIELDS 7
[13] Chris Hall, Big symplectic or orthogonal monodromy modulo£, Duke Math. J. 141 (2008),
no. 1, 179-203.
[14] Luc Illusie, Theorie de Brauer et caracteristique d'Euler-Poincare (d'apres P. Deligne), The
Euler-Poincare characteristic (French), Asterisque, vol. 82, Soc. Math. France, Paris, 1981,
pp. 161-172.
[15] Nicholas M. Katz, Sums of Betti numbers in arbitrary characteristic, Finite Fields Appl. 7
(2001), no. 1, 29-44.
[16] Nicholas M. Katz and Peter Sarnak, Random matrices, Probenius eigenvalues, and mon-
odromy, American Mathematical Society, Providence, RI, 1999.
[17] E. Kowalski, The large sieve, monodromy and zeta functions of curves, J. Reine Angew.
Math. 601 (2006), 29-69.
[18] G.
I.
Lehrer, The l-adic cohomology of hyperplane complements, Bull. London Math. Soc. 24
(1992), no. 1, 76-82.
[19] H. W. Lenstra, Jr., J. Pila, and Carl Pomerance, A hyperelliptic smoothness test. I, Philos.
Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 397-408.
[20] Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126
(1987), no. 3, 649-673.
[21] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-
Verlag, Berlin, 1992.
[22] Allison M. Pacelli, Abelian subgroups of any order in class groups of global function fields, J.
Number Theory 106 (2004), no. 1, 26-49.
E-mail address:
j. achterl!lco1ostate. edu
DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, CO
80523
URL:
http:
I /www.
math. colostate. edu/
~achter
Previous Page Next Page