ON THE FOURTH MOMENT OF THETA FUNCTIONS AT THEIR CENTRAL POINT 7
References
[Bar] A. D. Barry. Moments of theta functions at their central point. PhD Thesis, ongoing work.
[Dav] H. Davenport. Multiplicative Number Theory. Springer-Verlag, Grad. Texts Math. 74, Third
Edition, 2000.
[HB] D. R. Heath-Brown. The fourth power mean of Dirichlet’s L-function. Analysis 1 (1981),
25–32.
[Lou98] S. Louboutin. Computation of relative class numbers of imaginary abelian number fields.
Experimental Math. 7 (1998), 293–303.
[Lou99] S. Louboutin. Sur le calcul num´erique des constantes des ´ equations fonctionnelles des
fonctions L associ´ ees aux caract`eres impairs. C. R. Acad. Sci. Paris er. I Math. 329 (1999),
347–350.
[Lou02] S. Louboutin. Efficient computation of class numbers of real abelian number fields. Al-
gorithmic Number Theory (Sydney, 2002), Lectures Notes in Computer Science 2369 (2002),
134–147.
[Lou07] S. Louboutin. Efficient computation of root numbers and class numbers of parametrized
families of real abelian number fields. Math. Comp. 76 (2007), 455–473.
[Rama] K. Ramachandra. Some remarks on a Theorem of Montgomery and Vaughan. J. Number
Theory 11 (1979), 465–471.
[RS] Z. Rudnick and K. Soundararajan. Lower bounds for moments of L-functions. Proc. Natl.
Acad. Sci. USA 102 (2005), 6837–6838.
[Ten] G. Tenenbaum. Introduction ` a la th´ eorie analytique et probabiliste des nombres. Cours
Sp´ ecialis´ es. Soci´ et´ e Math´ ematique de France, Paris, 1995.
Institut de Math´ ematiques de Luminy, UMR 6206. 163, avenue de Luminy. Case 907.
13288 Marseille Cedex 9, FRANCE
E-mail address: barry@iml.univ-mrs.fr, loubouti@iml.univ-mrs.fr
7
Previous Page Next Page