Some positive results in the context of universal models

Mirna Dˇzamonja

Abstract. Let (K, ≤) be a quasi-ordered set or a class, which we think of as a

class of models. A universal family in K is a dominating family in (K, ≤), and

if there is such a family of size one then we call its single element a universal

model in K. We survey some important instances of the existence of small

universal families and universal models in various classes and point out the

influence of the axioms of set theory on the existence of such objects. Then we

present some of the known methods of constructing small universal families

and universal models and discuss their limitations, pointing out some of the

remaining open questions.

1. Introduction

Let (K, ≤) be a a quasi-ordered set or a class, which we think of as a class of

models. In the context that interests us this may be the class of models of a given

cardinality of some ﬁrst order theory ordered by elementary embedding or the class

of models of a given cardinality of some abstract elementary class quasi-ordered

by the inherited order. We may also consider classes whose membership is not

determined by cardinality but by some other cardinal invariant such as topological

weight. A universal family in K is a dominating family in (K, ≤), and if there is

such a family of size one then we call its single element a universal model in K. The

smallest size of a universal family is called the universality number of (K, ≤).

Immediate examples of universal models are the the rationals considered as a

linear order, which embed every countable linear order, or [0,

1]κ

which contains a

closed copy of every compact space of weight κ, or the random graph which embeds

every countable graph. There are many other examples in just about every branch

of mathematics. The purpose of this article is to discuss general methods which

can be used to demonstrate the existence of universal models in various speciﬁc

contexts. In this presentation we concentrate on countable ﬁrst order theories.

The article does not deal with the related subject of methods that can be used

to demonstrate that a certain theory does not have a small universal family at a

certain cardinal; we can refer the reader to the survey article [2] for a description

of some such ideas.

1991 Mathematics Subject Classiﬁcation. Primary 03E35, 03C55.

Key words and phrases. universal models, universal families.

The author thanks Mittag-Leﬄer Institute for their support in September 2009 and EPSRC

for their support through grant EP/G068720.

1

Contemporary Mathematics

Volume 533, 2010

c 2010 American Mathematical Society

1

Contemporary Mathematics

Volume 533 , 2011

c 2011 American Mathematical Society

1

Mirna Dˇzamonja

Abstract. Let (K, ≤) be a quasi-ordered set or a class, which we think of as a

class of models. A universal family in K is a dominating family in (K, ≤), and

if there is such a family of size one then we call its single element a universal

model in K. We survey some important instances of the existence of small

universal families and universal models in various classes and point out the

influence of the axioms of set theory on the existence of such objects. Then we

present some of the known methods of constructing small universal families

and universal models and discuss their limitations, pointing out some of the

remaining open questions.

1. Introduction

Let (K, ≤) be a a quasi-ordered set or a class, which we think of as a class of

models. In the context that interests us this may be the class of models of a given

cardinality of some ﬁrst order theory ordered by elementary embedding or the class

of models of a given cardinality of some abstract elementary class quasi-ordered

by the inherited order. We may also consider classes whose membership is not

determined by cardinality but by some other cardinal invariant such as topological

weight. A universal family in K is a dominating family in (K, ≤), and if there is

such a family of size one then we call its single element a universal model in K. The

smallest size of a universal family is called the universality number of (K, ≤).

Immediate examples of universal models are the the rationals considered as a

linear order, which embed every countable linear order, or [0,

1]κ

which contains a

closed copy of every compact space of weight κ, or the random graph which embeds

every countable graph. There are many other examples in just about every branch

of mathematics. The purpose of this article is to discuss general methods which

can be used to demonstrate the existence of universal models in various speciﬁc

contexts. In this presentation we concentrate on countable ﬁrst order theories.

The article does not deal with the related subject of methods that can be used

to demonstrate that a certain theory does not have a small universal family at a

certain cardinal; we can refer the reader to the survey article [2] for a description

of some such ideas.

1991 Mathematics Subject Classiﬁcation. Primary 03E35, 03C55.

Key words and phrases. universal models, universal families.

The author thanks Mittag-Leﬄer Institute for their support in September 2009 and EPSRC

for their support through grant EP/G068720.

1

Contemporary Mathematics

Volume 533, 2010

c 2010 American Mathematical Society

1

Contemporary Mathematics

Volume 533 , 2011

c 2011 American Mathematical Society

1