12 MIRNA DZAMONJAˇ [8] M. Kojman and S. Shelah, The universality spectrum of stable unsuperstable theories, Annals of Pure and Applied Logic, vol. 58, pp. 57-72, (1992). [9] A. H. Mekler, Universal structures in power 1 , Journal of Symbolic Logic vol. 55, no.2, pp. 466–477, (1990). [10] M. Morley and R. Vaught, Homogeneous universal models, Math. Scand., vol. 11, pp. 37-57, (1962). [11] S. Shelah, Classification Theory, revised ed., Studies in Logic, vol. 73, North-Holland (Amsterdam-New York-Oxford-Tokyo), 705 pp., (1990). [12] S. Shelah, Independence results, Journal of Symbolic Logic, vol. 45, pp. 563–573, (1980). [13] S. Shelah, On universal graphs without instances of CH, Annals of Pure and Applied Logic, vol. 26, pp. 75–87, (1984). [14] S. Shelah, Universal graphs without instances of GCH: revisited, Israel Journal of Mathe- matics, vol. 70, no. 1, pp. 69–81, (1990). [15] S. Shelah, The Universality Spectrum: Consistency for more classes in Combinatorics, Paul Erd¨ os is Eighty, Bolyai Society Mathematical Studies vol. 1, pp. 403-420, (1993). (proceedings of the Meeting in honor of P. Erd¨ os, Keszthely, Hungary 7. 1993, an improved version available at http://www.math.rutgers.edu/˜shelarch). [16] S. Shelah, Toward classifying unstable theories, Annals of Pure and Applied Logic vol. 80, pp. 229-255, (1996). [17] R. Vaught, Denumerable models of complete theories, in lnfinitistic Methods (Pergamon, London) pp. 303-321, (1961). School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK E-mail address: h020@uea.ac.uk
Previous Page Next Page