[8] M. Kojman and S. Shelah, The universality spectrum of stable unsuperstable theories, Annals
of Pure and Applied Logic, vol. 58, pp. 57-72, (1992).
[9] A. H. Mekler, Universal structures in power ℵ1, Journal of Symbolic Logic vol. 55, no.2, pp.
466–477, (1990).
[10] M. Morley and R. Vaught, Homogeneous universal models, Math. Scand., vol. 11, pp. 37-57,
[11] S. Shelah, Classification Theory, revised ed., Studies in Logic, vol. 73, North-Holland
(Amsterdam-New York-Oxford-Tokyo), 705 pp., (1990).
[12] S. Shelah, Independence results, Journal of Symbolic Logic, vol. 45, pp. 563–573, (1980).
[13] S. Shelah, On universal graphs without instances of CH, Annals of Pure and Applied Logic,
vol. 26, pp. 75–87, (1984).
[14] S. Shelah, Universal graphs without instances of GCH: revisited, Israel Journal of Mathe-
matics, vol. 70, no. 1, pp. 69–81, (1990).
[15] S. Shelah, The Universality Spectrum: Consistency for more classes in Combinatorics, Paul
Erd¨ os is Eighty, Bolyai Society Mathematical Studies vol. 1, pp. 403-420, (1993). (proceedings
of the Meeting in honor of P. Erd¨ os, Keszthely, Hungary 7. 1993, an improved version available
at http://www.math.rutgers.edu/˜shelarch).
[16] S. Shelah, Toward classifying unstable theories, Annals of Pure and Applied Logic vol. 80,
pp. 229-255, (1996).
[17] R. Vaught, Denumerable models of complete theories, in lnfinitistic Methods (Pergamon,
London) pp. 303-321, (1961).
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
E-mail address: h020@uea.ac.uk
12 12
Previous Page Next Page