THE K-THEORY OF PROJECTIVE STIEFEL MANIFOLDS Para 11 eli zabl e X n,n X n,n-1 X 2n,2n-2 x4,s x8 s • x16,8 Not known BIBLIOGRAPHY Not stably parallelizable All not in a previous column 5 1. J. Adem, s. Gitler & I .M. James. "On axial maps of a certain type". Bol. Soc. Mat. 17 (1972), 59-62. 2. E. Antoniano, S. Gitler, J. Ucci, P. Zvengrowski. "The projective Stiefel manifolds, K-theory and parallelizability" (to appear). · 3. H. Cartan and S. Eilemberg. "Homological Algebra". Princeton University Press, Princeton Math. series, 19 (1965). 4. S. Gitler. "The projective Stiefel manifolds II. Applications". Topology 7 (1968), 47-53. 5. S. Gitler & K.Y. Lam. "The K-theory of Stiefel manifolds". Springer Verlag. Lecture Notes in Math. 168 (1970), 35-66. 6. L.H. Hodgkin and V.P. Snaith. "Topics in K-theory, Two independent contributions". Springer-Verlag. Lecture Notes in Mathematics 496 (1975). 7. K.Y. Lam. "Formula for the tangent bundle of fl~g manifolds and related manifolds". Trans. Math. Soc. 213 (1975), 305-311. 8. J. Milnor. "The representation rings of some classical-groups". Notes for Math. 402 (1963). 9. A. Roux. "Application de la suite espectrale d 1 Hodgkin au calcul de la K-theorie des varietes de Stiefel". Bull. Soc. Mat. France 99 (1971), 345-468. 10. P. Zvengrowski. "Ueber die Parallel1s1erbarke1t von Stiefel Mannisfal- tigkeit". Forschunginstitut fUr Mathematik ETH Zurich und University of Calgary. Apri 1 , 1976. · DEPARTMENT OF MATHEMATICS CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS-IPN Apdo. Postal 14-740 07000 Mexico 14, D.F. MEXICO
Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 1987 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.