THE K-THEORY OF PROJECTIVE STIEFEL MANIFOLDS Para 11 eli zabl e X n,n X n,n-1 X 2n,2n-2 x4,s x8 s x16,8 Not known BIBLIOGRAPHY Not stably parallelizable All not in a previous column 5 1. J. Adem, s. Gitler & I .M. James. "On axial maps of a certain type". Bol. Soc. Mat. 17 (1972), 59-62. 2. E. Antoniano, S. Gitler, J. Ucci, P. Zvengrowski. "The projective Stiefel manifolds, K-theory and parallelizability" (to appear). · 3. H. Cartan and S. Eilemberg. "Homological Algebra". Princeton University Press, Princeton Math. series, 19 (1965). 4. S. Gitler. "The projective Stiefel manifolds II. Applications". Topology 7 (1968), 47-53. 5. S. Gitler & K.Y. Lam. "The K-theory of Stiefel manifolds". Springer Verlag. Lecture Notes in Math. 168 (1970), 35-66. 6. L.H. Hodgkin and V.P. Snaith. "Topics in K-theory, Two independent contributions". Springer-Verlag. Lecture Notes in Mathematics 496 (1975). 7. K.Y. Lam. "Formula for the tangent bundle of fl~g manifolds and related manifolds". Trans. Math. Soc. 213 (1975), 305-311. 8. J. Milnor. "The representation rings of some classical-groups". Notes for Math. 402 (1963). 9. A. Roux. "Application de la suite espectrale d 1 Hodgkin au calcul de la K-theorie des varietes de Stiefel". Bull. Soc. Mat. France 99 (1971), 345-468. 10. P. Zvengrowski. "Ueber die Parallel1s1erbarke1t von Stiefel Mannisfal- tigkeit". Forschunginstitut fUr Mathematik ETH Zurich und University of Calgary. Apri 1 , 1976. · DEPARTMENT OF MATHEMATICS CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS-IPN Apdo. Postal 14-740 07000 Mexico 14, D.F. MEXICO
Previous Page Next Page