DYNAMICAL SYSTEMS IN INFINITE DIMENSION
C. FOIAS, 0. MANLEY, R. TEMAM ANDY. TREVE,
[FMTTl] Asymptotic Analysis of the Navier-Stokes equations,
Physica
90 (1989),
p.
157-188.
C. FOIAS, B. NICOLAENKO, G. SELL AND R. TEMAM,
[FNSTl] Varietes inertielles pour !'equation de
Kuramoto-Sivashinsky,
C.
i.
Acad. Sc. Paris, Serie
I, 901 {1985),
p.
285-288.
[FNST2] Inertial manifolds for the Kuramoto-Sivashinsky equation
and an estimate of their lowest dimension,
J.
lath Pure Appl.,
1988.
C. FOIAS AND G. PRODI,
[FPl] Sur le comportement global des solutions non stationnaires
des equations de Navier-Stokes en dimension 2,
lend. Sem. lat.
Univ. Padova,
39 (1967),
p.
1-3./.
C. FOIAS, G. SELL AND R. TEMAM,
[FSTl] Varietes Inertielles des equations differentielles
dissipatives,
C. B. Acad. Sc. Paris, Serie
I. 301 (1985)
p.
l:J9-1./2.
[FST2] Inertial Manifolds for nonlinear evolutionary equations, J.
Differ. equ.
1988.
C. FOIAS, G. SELL AND R. TITI,
[FSTil] to appear.
C. FOIAS AND R. TEMAM,
[FTl] Determination of the solutions of the Navier-Stokes
equations by a set of nodal values,
lath. Comp .
./9 (198./)
p.
117-199.
[FT2] Analytic and geometric properties of the solutions of the
Navier-Stokes equations,
J.
lath. Pures Appl.,
58 (1979),
p.
999-968.
J. M. GHIDAGLIA AND B. HERON
[GHl] Dimension of the attractor associated to the
Guinzburg-Landau equation,
Physico.
280 (1987),
p.
282-90./.
J.
M. GHIDAGLIA AND R. TEMAM,
[GTl] Attractors for nonlinear hyperbolic equations,
/.lath.
Pures Appl.,
66 (1987)
p.
£79-919.
[GT2] Long-time behavior for slightly compressible two-dimensional
Navier-Stokes equations. Attractors and their dimension,
Asymptotic Analysis, Yol.
1, 1988.
[GT3] See article in this volume.
J. HALE,
[Hl] Asymptotic behavior of
dissipative
systems,
Kathematical
surveys and monographs, Yol.
£5,
AIS Providence,
1988.
25
Previous Page Next Page