26

R. TEMAM

D. A. KAMAEV,

[K1] Hyperbolic limit sets of evolutionary equations and the

Galerkin method,

Russian Hath. Surveys,

95: 9 (1980);

p.

£99-£49.

J. KAPLAN AND J. YORKE,

[KY1] Chaotic behavior of multidimensional difference equation. in

functional differential eguations and approximation of fixed points

H.O. Peitgen and H.O. Walther (Eds), Lecture Notes in Math. Vol.

730, Springer-Verlag 1979.

J. MALLET-PARET,

[MP1] Negatively invariant sets of compacts maps and an extension

of a theorem of Cartwright,

!.

Dijj. lqu.

££

(1967), p. 991.

J. MALLET-PARET AND

G.

SELL,

[MS1] Inertial manifolds for reaction diffusion equations in

higher space dimensions,

IIJ

preprint, to appear.

R.

MAtm,

[M1] On the dimension of the compact invariant sets of certain

nonlinear maps in

"Dynamical systems and Turbulence.

Warwick 1980".

D. Rand ed., Lecture Notes in Math.

Yol.

898,

Springer-Verlag

1981.

M. MARION,

[M1] Article in this volume.

X. MORA AND J. SOLA-MORALES,

[MSm1] Existence and nonexistence of finite dimensional globally

attracting invariant manifolds in semilinear damped wave equations,

Oniversidad Autonoma de Barcelona, July

1986,

preprint.

B. NICOLAENKO, B. SCHEURER AND R. TEMAM,

[NST1] Some global dynamical properties of the

Kuramoto-Sivashinsky equations: Nonlinear stability and

attractors,

Phrsica

160 (1985), p. 155-189.

[NST2] Some global dynamical proPerties of a class of pattern

formation equations.

IIA

Preprint Series

#981, 1988,

Minneapolis.

R. TEMAM,

[T1] Infinite dimensional dynamical systems in mechanics and

physics,

Springer-Yerlag,

1988.

R. TEMAM

D. A. KAMAEV,

[K1] Hyperbolic limit sets of evolutionary equations and the

Galerkin method,

Russian Hath. Surveys,

95: 9 (1980);

p.

£99-£49.

J. KAPLAN AND J. YORKE,

[KY1] Chaotic behavior of multidimensional difference equation. in

functional differential eguations and approximation of fixed points

H.O. Peitgen and H.O. Walther (Eds), Lecture Notes in Math. Vol.

730, Springer-Verlag 1979.

J. MALLET-PARET,

[MP1] Negatively invariant sets of compacts maps and an extension

of a theorem of Cartwright,

!.

Dijj. lqu.

££

(1967), p. 991.

J. MALLET-PARET AND

G.

SELL,

[MS1] Inertial manifolds for reaction diffusion equations in

higher space dimensions,

IIJ

preprint, to appear.

R.

MAtm,

[M1] On the dimension of the compact invariant sets of certain

nonlinear maps in

"Dynamical systems and Turbulence.

Warwick 1980".

D. Rand ed., Lecture Notes in Math.

Yol.

898,

Springer-Verlag

1981.

M. MARION,

[M1] Article in this volume.

X. MORA AND J. SOLA-MORALES,

[MSm1] Existence and nonexistence of finite dimensional globally

attracting invariant manifolds in semilinear damped wave equations,

Oniversidad Autonoma de Barcelona, July

1986,

preprint.

B. NICOLAENKO, B. SCHEURER AND R. TEMAM,

[NST1] Some global dynamical properties of the

Kuramoto-Sivashinsky equations: Nonlinear stability and

attractors,

Phrsica

160 (1985), p. 155-189.

[NST2] Some global dynamical proPerties of a class of pattern

formation equations.

IIA

Preprint Series

#981, 1988,

Minneapolis.

R. TEMAM,

[T1] Infinite dimensional dynamical systems in mechanics and

physics,

Springer-Yerlag,

1988.