26
R. TEMAM
D. A. KAMAEV,
[K1] Hyperbolic limit sets of evolutionary equations and the
Galerkin method,
Russian Hath. Surveys,
95: 9 (1980);
p.
£99-£49.
J. KAPLAN AND J. YORKE,
[KY1] Chaotic behavior of multidimensional difference equation. in
functional differential eguations and approximation of fixed points
H.O. Peitgen and H.O. Walther (Eds), Lecture Notes in Math. Vol.
730, Springer-Verlag 1979.
J. MALLET-PARET,
[MP1] Negatively invariant sets of compacts maps and an extension
of a theorem of Cartwright,
!.
Dijj. lqu.
££
(1967), p. 991.
J. MALLET-PARET AND
G.
SELL,
[MS1] Inertial manifolds for reaction diffusion equations in
higher space dimensions,
IIJ
preprint, to appear.
R.
MAtm,
[M1] On the dimension of the compact invariant sets of certain
nonlinear maps in
"Dynamical systems and Turbulence.
Warwick 1980".
D. Rand ed., Lecture Notes in Math.
Yol.
898,
Springer-Verlag
1981.
M. MARION,
[M1] Article in this volume.
X. MORA AND J. SOLA-MORALES,
[MSm1] Existence and nonexistence of finite dimensional globally
attracting invariant manifolds in semilinear damped wave equations,
Oniversidad Autonoma de Barcelona, July
1986,
preprint.
B. NICOLAENKO, B. SCHEURER AND R. TEMAM,
[NST1] Some global dynamical properties of the
Kuramoto-Sivashinsky equations: Nonlinear stability and
attractors,
Phrsica
160 (1985), p. 155-189.
[NST2] Some global dynamical proPerties of a class of pattern
formation equations.
IIA
Preprint Series
#981, 1988,
Minneapolis.
R. TEMAM,
[T1] Infinite dimensional dynamical systems in mechanics and
physics,
Springer-Yerlag,
1988.
Previous Page Next Page