Volume: 31; 2013; 234 pp; Hardcover
MSC: Primary 11; Secondary 20
Print ISBN: 978-0-8218-9441-5
Product Code: CRMM/31
List Price: $105.00
AMS Member Price: $84.00
MAA Member Price: $94.50
Electronic ISBN: 978-0-8218-9479-8
Product Code: CRMM/31.E
List Price: $99.00
AMS Member Price: $79.20
MAA Member Price: $89.10
Supplemental Materials
La Formule des Traces Tordue d’après le Friday Morning Seminar
Share this pageJean-Pierre Labesse; Jean-Loup Waldspurger
with a Foreword by Robert Langlands
A co-publication of the AMS and Centre de Recherches Mathématiques
The trace formula for an arbitrary connected reductive group over a number field was developed by James Arthur. The twisted case was the subject of the Friday Morning Seminar at the Institute for Advanced Study in Princeton during the 1983–1984 academic year. During this seminar, lectures were given by Laurent Clozel, Jean-Pierre Labesse and Robert Langlands. Having been written quite hastily, the lecture notes of this seminar were in need of being revisited. The authors' ambition is to give, following these notes, a complete proof of the twisted trace formula in its primitive version, i.e., its noninvariant form. This is a part of the project of the Parisian team led by Laurent Clozel and Jean-Loup Waldspurger. Their aim is to give a complete proof of the stable form of the twisted trace formula, and to provide the background for the forthcoming book by James Arthur on twisted endoscopy for the general linear group with application to symplectic and orthogonal groups.
Titles in this series are co-published with the Centre de Recherches Mathématiques.
Readership
Graduate students and research mathematicians interested in automorphic representations and the Arthur-Selberg Trace formula.
Table of Contents
Table of Contents
La Formule des Traces Tordue d'apres le Friday Morning Seminar
- Cover Cover11
- Title page i2
- Tables des matères iii4
- Avant-propos de Robert Langlands vii8
- Préface xiii14
- Preface xxi22
- Part I. Géométrie et combinatoire 128
- Racines et convexes 330
- Espaces tordus 3764
- Théorie de la réduction 6188
- Part II. Théorie spectrale, troncatures et noyaux 79106
- L’opérateur de troncature 81108
- Formes automorphes et produits scalaires 93120
- Le noyau intégral 103130
- Décomposition spectrale 109136
- Part III. La formule des traces grossère 115142
- Formule des traces: état zéro 117144
- Développement géométrique 123150
- Développement spectral grossier 133160
- Formule des traces: propriétés formelles 149176
- Part IV. Forme explicite des termes spectraux 155182
- Introduction d’une fonction 𝐵 157184
- Calcul de 𝐴^{𝑇}(𝐵) 181208
- Formules explicites 217244
- Bibliographie 231258
- Index des notations 233260
- Back Cover Back Cover1263