Contents

Chapter 1. Introduction 1
 1.1. Introduction and context 1
 1.2. Summary of the monograph 15
 1.3. Notation 17
 Acknowledgments 18

Chapter 2. Function Space Preliminaries 19
 2.1. Exponents 19
 2.2. Tent spaces 21
 2.3. Z-spaces 24
 2.4. Unification: tent spaces, Z-spaces, and slice spaces 31
 2.5. Homogeneous smoothness spaces 36
 2.6. Factorisation and interpolation of Z-spaces 40
 2.7. Table of exponents and function spaces 44

Chapter 3. Operator Theoretic Preliminaries 45
 3.1. Bisectorial operators and holomorphic functional calculus 45
 3.2. Off-diagonal estimates and the Standard Assumptions 49
 3.3. Integral operators on tent spaces 51
 3.4. Extension and contraction operators 55

Chapter 4. Adapted Besov–Hardy–Sobolev Spaces 61
 4.1. Initial definitions, equivalent norms, and duality 61
 4.2. Mapping properties of the holomorphic functional calculus 65
 4.3. Completions, interpolation, and inclusions 66
 4.4. The Cauchy operator on general adapted spaces 71

Chapter 5. Spaces Adapted to Perturbed Dirac Operators 75
 5.1. D-adapted spaces 75
 5.2. Similarity of functional calculus: going between DB and BD 77
 5.3. Inclusions and identifications of DB- and D-adapted spaces 79
 5.4. Projections and BD-adapted spaces 83
 5.5. The Cauchy operator on DB-adapted spaces 85
 5.6. Technicalities involving extensions and projections 92

Chapter 6. Classification of Solutions to Cauchy–Riemann Systems and
 Elliptic Equations 95
 6.1. Basic properties of solutions 95
 6.2. Decay of solutions at infinity 96
 6.3. Classification and representation theorems 98
 6.4. Proofs of classification theorems 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.</td>
<td>Interpolation of solution spaces</td>
<td>119</td>
</tr>
<tr>
<td>6.6.</td>
<td>Boundary behaviour of solutions</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Chapter 7. Applications to Boundary Value Problems</td>
<td></td>
</tr>
<tr>
<td>7.1.</td>
<td>Characterisation of well-posedness and corollaries</td>
<td>127</td>
</tr>
<tr>
<td>7.2.</td>
<td>Regions of well-posedness for certain classes of coefficients</td>
<td>132</td>
</tr>
<tr>
<td>7.3.</td>
<td>Stability of well-posedness under perturbation of coefficients</td>
<td>137</td>
</tr>
<tr>
<td>7.4.</td>
<td>The method of layer potentials</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>151</td>
</tr>
</tbody>
</table>