Contents

Introduction xiii

Strand I: Patterns 1
 Tips on problem-solving and spotting patterns 2
 A look ahead at three patterns 4

Chapter I: Tally Bones to the Integers 9
 Tally bones 9
 A table of primes? 10
 The solution to a puzzle? 12
 A base twelve or base sixty system? 13
 Base ten, base twenty, base eight, base two 15
 A binary digit interlude 16
 Solving the shepherd’s puzzle and beyond 19
 Three parting puzzles 21
 Exercises 23

Strand II: Leibniz and the Binary Revolution 29
 A continued fraction connection 34

Chapter II: Mathematical Induction 37
 Set notation and the well-ordering principle 37
 The principle of mathematical induction 41
 The fundamental theorem of arithmetic 43
 Equivalence classes 45
 Nim* 47
 Case Study: Mancala* 57
 Mancala nim* 60
 Exercises 63

Strand III: Al-Maghribî meets Sudoku 69

Chapter III: GCDs and Diophantine Equations 73
The greatest common divisor 74
An ancient algorithm for the greatest common divisor 78
The Diophantine solution 85
A litmus test for Euclid’s solution 88
Clock arithmetic 89
Systems of Diophantine equations 92
The totient is multiplicative 93
A problem from Diophantus’s *Arithmetica* 93
Exercises 94

Strand IV: Fractions in the Pythagorean Scale 99
A note-naming interlude 100
How Pythagoras generated his scale 102

Chapter IV: A Tree of Fractions 107
Unitary fractions in ancient Egypt 108
A continued fraction tradition 110
Farey sequences 111
A mediant interlude* 116

The Stern-Brocot tree 118
A grand finale* 130
Exercises 132

Strand V: Bach and The Well-Tempered Clavier 139
A well-tempered innovation 141
A musical interlude 142
An equal-tempered revolution 144
A continued fraction connection 145

Chapter V: The Harmonic Series 147
Case Study: Jeeps in the Desert 157
A look behind and a look ahead 162
A generating function finale* 163
Exercises 166

Strand VI: A Clay Tablet 169
The Babylonian number system 170
The accepted transliteration of Plimpton 322 172
Reciprocal pairs generate normalized Pythagorean triples 174
Finding the realm of potential generators 178
How the scribe may have screened for generators 181
The purpose of the tablet 182
Contents

Chapter VI: Families of Numbers 185
- Primitive Pythagorean triples 185
- Binomial coefficients 186
- Fibonacci numbers 190
- The continued fraction recursion for e 195
- The Catalan numbers* 197
- Ben-Hur numbers* 203
- Pogo-stick hikes along continued fractions 209
- Exercises 211

Strand VII: Planetary Conjunctions 221
- A few conjunction stories 221
- A rough guess 222
- A numerical approach 223
- A continued fraction approach 224

Chapter VII: Simple and Strange Harmonic Motion 229
- A heavenly approach to circular motion 229
- An earthly approach to circular motion* 234
- Strange harmonic motion 240
- A where, what, and why interlude 244
- The harmonic algorithm 246
- A blue moon application 251
- Exercises 253

Strand VIII: The Size and Shape of Utopia Island 261

Chapter VIII: Classic Elliptical Fractions 271
- The prehistory of the ellipse 272
- The trammel of Archimedes 274
- An old elliptical puzzle 275
- A model for the heavens 278
- Newton’s case for a flattened Earth* 280
- The French expeditions to Peru and Lapland 289
- A final riddle 295
- Exercises 299

Strand IX: The Cantor Set 303
- A lotus-flower introduction 303
- Ternary notation 305
- A reality check* 308

Chapter IX: Continued Fractions 311
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A local approach to continued fractions</td>
<td>311</td>
</tr>
<tr>
<td>A global approach to continued fractions</td>
<td>318</td>
</tr>
<tr>
<td>A plethora of continued fractions</td>
<td>322</td>
</tr>
<tr>
<td>Why the ugly duckling G is really a swan</td>
<td>328</td>
</tr>
<tr>
<td>An interlude delineating Algorithm O^*</td>
<td>330</td>
</tr>
<tr>
<td>Dominance domains</td>
<td>331</td>
</tr>
<tr>
<td>The harmonic algorithm is a chameleon</td>
<td>332</td>
</tr>
<tr>
<td>Applying continued fractions to factoring integers</td>
<td>335</td>
</tr>
<tr>
<td>The first infinite continued fraction</td>
<td>336</td>
</tr>
<tr>
<td>Black holes and the receding Moon</td>
<td>340</td>
</tr>
<tr>
<td>Exercises</td>
<td>345</td>
</tr>
<tr>
<td>Strand X: The Longevity of the 17-year Cicada</td>
<td>351</td>
</tr>
<tr>
<td>Chapter X: Transits of Venus</td>
<td>357</td>
</tr>
<tr>
<td>A historical interlude</td>
<td>358</td>
</tr>
<tr>
<td>A Venus-Earth-Sun model</td>
<td>362</td>
</tr>
<tr>
<td>Conditions for a transit to occur</td>
<td>364</td>
</tr>
<tr>
<td>Recognizing the pattern</td>
<td>368</td>
</tr>
<tr>
<td>A reality check</td>
<td>373</td>
</tr>
<tr>
<td>An easier way to determine when transits occur</td>
<td>375</td>
</tr>
<tr>
<td>A final thought</td>
<td>375</td>
</tr>
<tr>
<td>Exercises</td>
<td>376</td>
</tr>
<tr>
<td>Strand XI: Meton of Athens</td>
<td>379</td>
</tr>
<tr>
<td>Chapter XI: Lunar Rhythms</td>
<td>383</td>
</tr>
<tr>
<td>Predicting the time lapse between successive new moons</td>
<td>384</td>
</tr>
<tr>
<td>Checking the expected length of short and long spans</td>
<td>389</td>
</tr>
<tr>
<td>Expected value of the variation in spans of years*</td>
<td>391</td>
</tr>
<tr>
<td>Final thoughts</td>
<td>393</td>
</tr>
<tr>
<td>Exercises</td>
<td>395</td>
</tr>
<tr>
<td>Strand XII: Eclipse Lore and Legends</td>
<td>399</td>
</tr>
<tr>
<td>Chapter XII: Diophantine Eclipses</td>
<td>405</td>
</tr>
<tr>
<td>Adapting the Earth-Moon-Sun model</td>
<td>405</td>
</tr>
<tr>
<td>Eclipse duration</td>
<td>408</td>
</tr>
<tr>
<td>A sufficient condition for eclipses</td>
<td>408</td>
</tr>
<tr>
<td>Finding H at any lunation</td>
<td>410</td>
</tr>
<tr>
<td>Using Condition 1 to find the lapse between successive eclipses</td>
<td>412</td>
</tr>
<tr>
<td>Continued fraction insight</td>
<td>412</td>
</tr>
</tbody>
</table>
Contents

Some Diophantine magic 415
Lunar eclipses 418
A reality check 419
A final note 420
Exercises 421

Appendix I: List of Symbols Used in the Text 425
Appendix II: An Introduction to Vectors and Matrices 429
Appendix III: Computer Algebra System Codes 437
Appendix IV: Comments on Selected Exercises 453
Bibliography 465
Index 473