Contents

Preface vii

Some Background ix
 Fields ix
 Groups ix
 Representations x
 Local Langlands Programme xii

Part 1. Smooth Representations 1

Chapter 1. The Bernstein Decomposition and the Bernstein Centre
 ALAN ROCHE (UNIVERSITY OF OKLAHOMA) 3
 Introduction 3
 1.1. Notation and some preliminaries 4
 1.2. The splitting induced by an irreducible finite representation 6
 1.3. Splitting off all finite irreducible representations 10
 1.4. Reductive groups and cuspidal representations 12
 1.5. The structure of a cuspidal component I 17
 1.6. The structure of a cuspidal component II 21
 1.7. The Bernstein decomposition 29
 1.8. The structure of a non-cuspidal component I 37
 1.9. The structure of a non-cuspidal component II 41
 1.10. Some applications 45

Chapter 2. Bruhat-Tits Theory and Buildings
 JIU-KANG YU (PURDUE UNIVERSITY) 53
 Introduction 53
 2.1. Lecture 1 53
 2.2. Lecture 2 63
 2.3. Lecture 3 70

Chapter 3. Supercuspidal Representations: Construction and Exhaustion
 JU-LEE KIM (MASSACHUSETTS INSTITUTE OF TECHNOLOGY) 79
 Introduction 79
 3.1. History 80
 3.2. Preliminaries 82
 3.3. Open compact subgroups: The Moy-Prasad filtration 87
 3.4. Some examples of supercuspidal representations 88
 3.5. More examples 90
3.6. Yu’s construction 91
3.7. An exhaustion theorem 93
3.8. Proof of the main theorem 95
3.9. Some remarks 98

Part 2. Character Theory 101

Chapter 4. Character Theory of Reductive \(p \)-adic Groups
Paul J. Sally, Jr. (University of Chicago) and Loren Spice (University of Michigan) 103
Introduction 103
4.2. History II. 1975–1990 107
4.3. History III. 1990–Present 108
4.4. \(GL_d \) and \(SL_d \) 109
4.5. Division algebras 109

Chapter 5. An Overview of Arithmetic Motivic Integration
Julia Gordon (University of British Columbia) and Yoav Yaffe (McMaster University) 113
Introduction 113
5.1. \(p \)-adic integration 114
5.2. Constructible motivic Functions 118
5.3. Motivic integration as pushforward 125
5.4. Back to \(p \)-adic integration 135
5.5. Some applications 139
5.6. Appendix 1: The older theories 142
5.7. Appendix 2: An example 147

Part 3. Local Langlands Correspondence 151

Chapter 6. Notes on the Local Langlands Program
Paul Mezo (Carleton University) 153
Preface 153
6.1. The Galois group 153
6.2. Local abelian class field theory 156
6.3. Weil groups 159
6.4. The Weil-Deligne group 161
6.5. The local Langlands correspondence for general linear groups 164
6.6. L-groups 168
6.7. The local Langlands correspondence 173

Chapter 7. On the Local Langlands Correspondence for Tori
Jiu-Kang Yu (Purdue University) 177
Introduction 177
7.1. Notation 177
7.2. Local class field theory 178
7.3. The special case of an induced torus 178
7.4. The special case of characters of finite order 178
7.5. The LLC for tori in general 179
7.6. Proof of uniqueness and $(2')$ 179
7.7. Proof of existence 180
7.8. Proof that φ_T is an isomorphism 182
7.9. Depths for tamely ramified tori 183
7.10. The depth-preserving theorem 183

Bibliography 185