Contents

Preview vii
Contents of the Notes xv
Introduction 1
Front matter 5

Part I. Background Scenery 25
Contents of Part I 25

Chapter 1. Higher Dimensions and the h–Cobordism Theorem 27
 1.1. The statement of the theorem. 28
 1.2. Handle decompositions. 32
 1.3. Handle moves. 40
 1.4. Outline of proof. 43
 1.5. The Whitney trick. 45
 1.6. Low and high handles; handle trading. 47
 1.7. Notes. 54

Chapter 2. Topological 4–Manifolds and h–Cobordisms 69
 2.1. Casson handles. 70
 2.2. The topological h–cobordism theorem. 80
 2.3. Homology 3–spheres bound fake 4–balls. 83
 2.4. Smooth failure: the twisted cork. 89
 2.5. Notes. 91
Part II. Smooth 4-Manifolds and Intersection Forms

Contents of Part II 107

Chapter 3. Getting Acquainted with Intersection Forms 111
- 3.1. Preparation: representing homology by surfaces. 112
- 3.2. Intersection forms. 115
- 3.3. Essential example: the $K3$ surface. 127
- 3.4. Notes. 134

Chapter 4. Intersection Forms and Topology 139
- 4.1. Whitehead’s theorem and homotopy type. 140
- 4.2. Wall’s theorems and h–cobordisms. 149
- 4.3. Intersection forms and characteristic classes. 160
- 4.4. Rokhlin’s theorem and characteristic elements. 168
- 4.5. Notes. 173

Chapter 5. Classifications and Counterclassifications 237
- 5.1. Serre’s algebraic classification of forms. 238
- 5.2. Freedman’s topological classification. 239
- 5.3. Donaldson’s smooth exclusions. 243
- 5.4. Byproducts: exotic \mathbb{R}^4’s. 250
- 5.5. Notes. 260

Part III. A Survey of Complex Surfaces

Contents of Part III 273

Chapter 6. Running through Complex Geometry 275
- 6.1. Surfaces. 275
- 6.2. Curves on surfaces. 277
- 6.3. Line bundles. 278
- 6.4. Notes. 283

Chapter 7. The Enriques–Kodaira Classification 285
- 7.1. Blow-down till nef. 286
- 7.2. How nef: numerical dimension. 292
- 7.3. Alternative: Kodaira dimension. 294
- 7.4. The Kähler case. 295
- 7.5. Complex \textit{versus} diffeomorphic. 296
Contents

7.6. Notes. 299

Chapter 8. Elliptic Surfaces 301
8.1. The rational elliptic surface. 302
8.2. Fiber-sums. 306
8.3. Logarithmic transformations. 310
8.4. Topological classification. 314
8.5. Notes. 317

Part IV. Gauge Theory on 4-Manifolds

Contents of Part IV 327

Chapter 9. Prelude, and the Donaldson Invariants 331
9.1. Prelude. 332
9.2. Bundles, connections, curvatures. 333
9.3. We are special: self-duality. 350
9.4. The Donaldson invariants. 353
9.5. Notes. 357

Chapter 10. The Seiberg–Witten Invariants 375
10.1. Almost-complex structures. 376
10.2. Spinc structures and spinors. 382
10.3. Definition of the Seiberg–Witten invariants. 396
10.4. Main results and properties. 404
10.5. Invariants of symplectic manifolds. 409
10.6. Invariants of complex surfaces. 412
10.7. Notes. 415

Chapter 11. The Minimum Genus of Embedded Surfaces 481
11.1. Before gauge theory: Kervaire–Milnor. 482
11.2. Enter the hero: the adjunction inequality. 486
11.3. Digression: the happy case of 3-manifolds. 491
11.4. Notes. 496

Chapter 12. Wildness Unleashed: The Fintushel–Stern Surgery 531
12.1. Gluing results in Seiberg–Witten theory. 532
12.2. Review: the Alexander polynomial of a knot. 539
12.3. The knot surgery. 541
12.4. Applications. 545
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5. Notes.</td>
<td>547</td>
</tr>
<tr>
<td>Epilogue</td>
<td>557</td>
</tr>
<tr>
<td>List of Figures and Tables</td>
<td>559</td>
</tr>
<tr>
<td>Bibliography</td>
<td>567</td>
</tr>
<tr>
<td>Index</td>
<td>587</td>
</tr>
</tbody>
</table>