Preface This text presents models of transport in continuous media and a corre- sponding body of mathematical techniques. Within this text, I have em- bedded a subtext of problems. Topics and problems are listed together in the table of contents. Each problem is followed by a detailed solution em- phasizing process and craftsmanship. These problems and solutions express the practice of applied mathematics as the examination and re-examination of essential ideas in many interrelated examples. Since the science that falls under the headings “transport” or “fluids” is so broad, this introductory text for a one-term advanced undergraduate or beginning graduate course must select a highly specific path. The main requirement is that topics and exercises be logically interconnected and form a self-contained whole. Briefly, the physical topics are: convection and diffusion as the sim- plest models of transport, local conservation laws with sources as a general “frame” of continuum mechanics, ideal fluid as the simplest example of an actual physical medium with mass, momentum and energy transport, and finally, free surface waves and shallow water theory. The idea behind this lineup is the progression from purely geometric and kinematic to genuinely physical. The mathematical prerequisites for engaging the practice of this text are: fluency in advanced calculus and vector analysis, and acquaintance with PDEs from an introductory undergraduate course. The mathematical skills developed in this text have two tracks: First, classical constructions of solutions to linear PDEs and related tools, such as the Dirac δ-function, are presented with a relentless sense of connection to xi

Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 2010 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.