Contents

Preface v

Chapter 1. A survey of sphere theorems in geometry 1
 §1.1. Riemannian geometry background 1
 §1.2. The Topological Sphere Theorem 6
 §1.3. The Diameter Sphere Theorem 7
 §1.4. The Sphere Theorem of Micallef and Moore 9
 §1.5. Exotic Spheres and the Differentiable Sphere Theorem 13

Chapter 2. Hamilton’s Ricci flow 15
 §2.1. Definition and special solutions 15
 §2.2. Short-time existence and uniqueness 17
 §2.3. Evolution of the Riemann curvature tensor 21
 §2.4. Evolution of the Ricci and scalar curvature 28

Chapter 3. Interior estimates 31
 §3.1. Estimates for the derivatives of the curvature tensor 31
 §3.2. Derivative estimates for tensors 33
 §3.3. Curvature blow-up at finite-time singularities 36

Chapter 4. Ricci flow on S^2 37
 §4.1. Gradient Ricci solitons on S^2 37
 §4.2. Monotonicity of Hamilton’s entropy functional 39
 §4.3. Convergence to a constant curvature metric 45

Chapter 5. Pointwise curvature estimates 49
 §5.1. Introduction 49
§5.2. The tangent and normal cone to a convex set
§5.3. Hamilton’s maximum principle for the Ricci flow
§5.4. Hamilton’s convergence criterion for the Ricci flow

Chapter 6. Curvature pinching in dimension 3
§6.1. Three-manifolds with positive Ricci curvature
§6.2. The curvature estimate of Hamilton and Ivey

Chapter 7. Preserved curvature conditions in higher dimensions
§7.1. Introduction
§7.2. Nonnegative isotropic curvature
§7.3. Proof of Proposition 7.4
§7.4. The cone \(\tilde{C} \)
§7.5. The cone \(\hat{C} \)
§7.6. An invariant set which lies between \(\tilde{C} \) and \(\hat{C} \)
§7.7. An overview of various curvature conditions

Chapter 8. Convergence results in higher dimensions
§8.1. An algebraic identity for curvature tensors
§8.2. Constructing a family of invariant cones
§8.3. Proof of the Differentiable Sphere Theorem
§8.4. An improved convergence theorem

Chapter 9. Rigidity results
§9.1. Introduction
§9.2. Berger’s classification of holonomy groups
§9.3. A version of the strict maximum principle
§9.4. Three-manifolds with nonnegative Ricci curvature
§9.5. Manifolds with nonnegative isotropic curvature
§9.6. Kähler-Einstein and quaternionic-Kähler manifolds
§9.7. A generalization of a theorem of Tachibana
§9.8. Classification results

Appendix A. Convergence of evolving metrics
Appendix B. Results from complex linear algebra
Problems
Bibliography
Index