Contents

Preface to the English edition xi

Preface to the German edition xiii

Chapter 1. Introduction and examples 1

§1.1. What is optimal control? 1

§1.2. Examples of convex problems 3

§1.3. Examples of nonconvex problems 7

§1.4. Basic concepts for the finite-dimensional case 9

Chapter 2. Linear-quadratic elliptic control problems 21

§2.1. Normed spaces 21

§2.2. Sobolev spaces 24

§2.3. Weak solutions to elliptic equations 30

§2.4. Linear mappings 40

§2.5. Existence of optimal controls 48

§2.6. Differentiability in Banach spaces 56

§2.7. Adjoint operators 60

§2.8. First-order necessary optimality conditions 63

§2.9. Construction of test examples 80

§2.10. The formal Lagrange method 84

§2.11. Further examples * 89

§2.12. Numerical methods 91

§2.13. The adjoint state as a Lagrange multiplier * 106

§2.14. Higher regularity for elliptic problems 111

§2.15. Regularity of optimal controls 114
§2.16. Exercises 116

Chapter 3. Linear-quadratic parabolic control problems 119
§3.1. Introduction 119
§3.2. Fourier’s method in the spatially one-dimensional case 124
§3.3. Weak solutions in $W^{1,0}_2(Q)$ 136
§3.4. Weak solutions in $W(0,T)$ 141
§3.5. Parabolic optimal control problems 153
§3.6. Necessary optimality conditions 156
§3.7. Numerical methods 166
§3.8. Derivation of Fourier expansions 171
§3.9. Linear continuous functionals as right-hand sides * 175
§3.10. Exercises 177

Chapter 4. Optimal control of semilinear elliptic equations 181
§4.1. Preliminary remarks 181
§4.2. A semilinear elliptic model problem 182
§4.3. Nemytskii operators 196
§4.4. Existence of optimal controls 205
§4.5. The control-to-state operator 211
§4.6. Necessary optimality conditions 215
§4.7. Application of the formal Lagrange method 220
§4.8. Pontryagin’s maximum principle * 224
§4.9. Second-order derivatives 226
§4.10. Second-order optimality conditions 231
§4.11. Numerical methods 257
§4.12. Exercises 263

Chapter 5. Optimal control of semilinear parabolic equations 265
§5.1. The semilinear parabolic model problem 265
§5.2. Basic assumptions for the chapter 268
§5.3. Existence of optimal controls 270
§5.4. The control-to-state operator 273
§5.5. Necessary optimality conditions 277
§5.6. Pontryagin’s maximum principle * 285
§5.7. Second-order optimality conditions 286
§5.8. Test examples 298
§5.9. Numerical methods 308
§5.10. Further parabolic problems * 313
§5.11. Exercises 321

Chapter 6. Optimization problems in Banach spaces 323
§6.1. The Karush–Kuhn–Tucker conditions 323
§6.2. Control problems with state constraints 338
§6.3. Exercises 353

Chapter 7. Supplementary results on partial differential equations 355
§7.1. Embedding results 355
§7.2. Elliptic equations 356
§7.3. Parabolic problems 366

Bibliography 385
Index 397