Contents

Preface xlvii

Part 1. The Language of Categories

Chapter 1. Categories and Functors 3
 §1.1. Diagrams 3
 §1.2. Categories 5
 §1.3. Functors 7
 §1.4. Natural Transformations 11
 §1.5. Duality 14
 §1.6. Products and Sums 15
 §1.7. Initial and Terminal Objects 18
 §1.8. Group and Cogroup Objects 21
 §1.9. Homomorphisms 24
 §1.10. Abelian Groups and Cogroups 25
 §1.11. Adjoint Functors 26

Chapter 2. Limits and Colimits 29
 §2.1. Diagrams and Their Shapes 29
 §2.2. Limits and Colimits 31
 §2.3. Naturality of Limits and Colimits 34
 §2.4. Special Kinds of Limits and Colimits 35
 §2.5. Formal Properties of Pushout and Pullback Squares 40
Part 2. Semi-Formal Homotopy Theory

Chapter 3. Categories of Spaces

- §3.1. Spheres and Disks
- §3.2. CW Complexes
- §3.3. Example: Projective Spaces
- §3.4. Topological Spaces
- §3.5. The Category of Pairs
- §3.6. Pointed Spaces
- §3.7. Relating the Categories of Pointed and Unpointed Spaces
- §3.8. Suspension and Loop
- §3.9. Additional Problems and Projects

Chapter 4. Homotopy

- §4.1. Homotopy of Maps
- §4.2. Constructing Homotopies
- §4.3. Homotopy Theory
- §4.4. Groups and Cogroups in the Homotopy Category
- §4.5. Homotopy Groups
- §4.6. Homotopy and Duality
- §4.7. Homotopy in Mapping Categories
- §4.8. Additional Problems

Chapter 5. Cofibrations and Fibrations

- §5.1. Cofibrations
- §5.2. Special Properties of Cofibrations of Spaces
- §5.3. Fibrations
- §5.4. Factoring through Cofibrations and Fibrations
- §5.5. More Homotopy Theory in Categories of Maps
- §5.6. The Fundamental Lifting Property
- §5.7. Pointed Cofibrations and Fibrations
- §5.8. Well-Pointed Spaces
- §5.9. Exact Sequences, Cofibers and Fibers
- §5.10. Mapping Spaces
- §5.11. Additional Topics, Problems and Projects

Chapter 6. Homotopy Limits and Colimits

- §6.1. Homotopy Equivalence in Diagram Categories
Contents

§15.4. Some Theory of Fiber Bundles \hspace{1cm} 333
§15.5. Serre Fibrations and Model Structures \hspace{1cm} 336
§15.6. The Simplicial Approach to Homotopy Theory \hspace{1cm} 341
§15.7. Quasifibrations \hspace{1cm} 346
§15.8. Additional Problems and Projects \hspace{1cm} 348

Part 4. Targets as Domains, Domains as Targets

Chapter 16. Constructions of Spaces and Maps \hspace{1cm} 353
 §16.1. Skeleta of Spaces \hspace{1cm} 354
 §16.2. Connectivity and CW Structure \hspace{1cm} 357
 §16.3. Basic Obstruction Theory \hspace{1cm} 359
 §16.4. Postnikov Sections \hspace{1cm} 361
 §16.5. Classifying Spaces and Universal Bundles \hspace{1cm} 363
 §16.6. Additional Problems and Projects \hspace{1cm} 371

Chapter 17. Understanding Suspension \hspace{1cm} 373
 §17.1. Moore Paths and Loops \hspace{1cm} 373
 §17.2. The Free Monoid on a Topological Space \hspace{1cm} 376
 §17.3. Identifying the Suspension Map \hspace{1cm} 379
 §17.4. The Freudenthal Suspension Theorem \hspace{1cm} 382
 §17.5. Homotopy Groups of Spheres and Wedges of Spheres \hspace{1cm} 383
 §17.6. Eilenberg-Mac Lane Spaces \hspace{1cm} 384
 §17.7. Suspension in Dimension 1 \hspace{1cm} 387
 §17.8. Additional Topics and Problems \hspace{1cm} 389

Chapter 18. Comparing Pushouts and Pullbacks \hspace{1cm} 393
 §18.1. Pullbacks and Pushouts \hspace{1cm} 393
 §18.2. Comparing the Fiber of f to Its Cofiber \hspace{1cm} 396
 §18.3. The Blakers-Massey Theorem \hspace{1cm} 398
 §18.4. The Delooping of Maps \hspace{1cm} 402
 §18.5. The n-Dimensional Blakers-Massey Theorem \hspace{1cm} 405
 §18.6. Additional Topics, Problems and Projects \hspace{1cm} 409

Chapter 19. Some Computations in Homotopy Theory \hspace{1cm} 413
 §19.1. The Degree of a Map $S^n \rightarrow S^n$ \hspace{1cm} 414
 §19.2. Some Applications of Degree \hspace{1cm} 417
 §19.3. Maps Between Wedges of Spheres \hspace{1cm} 421
§19.4. Moore Spaces 424
§19.5. Homotopy Groups of a Smash Product 427
§19.6. Smash Products of Eilenberg-MacLane Spaces 429
§19.7. An Additional Topic and Some Problems 432

Chapter 20. Further Topics 435
§20.1. The Homotopy Category Is Not Complete 435
§20.2. Cone Decompositions with Respect to Moore Spaces 436
§20.3. First \(p \)-Torsion Is a Stable Invariant 438
§20.4. Hopf Invariants and Lusternik-Schnirelmann Category 445
§20.5. Infinite Symmetric Products 448
§20.6. Additional Topics, Problems and Projects 452

Part 5. Cohomology and Homology 459

Chapter 21. Cohomology 459
§21.1. Cohomology 459
§21.2. Basic Computations 467
§21.3. The External Cohomology Product 473
§21.4. Cohomology Rings 475
§21.5. Computing Algebra Structures 479
§21.6. Variation of Coefficients 485
§21.7. A Simple Künneth Theorem 487
§21.8. The Brown Representability Theorem 489
§21.9. The Singular Extension of Cohomology 494
§21.10. An Additional Topic and Some Problems and Projects 495

Chapter 22. Homology 499
§22.1. Homology Theories 499
§22.2. Examples of Homology Theories 505
§22.3. Exterior Products and the Künneth Theorem for Homology 508
§22.4. Coalgebra Structure for Homology 509
§22.5. Relating Homology to Cohomology 510
§22.6. H-Spaces and Hopf Algebras 512

Chapter 23. Cohomology Operations 515
§23.1. Cohomology Operations 516
§23.2. Stable Cohomology Operations 518
§23.3. Using the Diagonal Map to Construct Cohomology Operations 521
§23.4. The Steenrod Reduced Powers 525
§23.5. The Ádem Relations 528
§23.6. The Algebra of the Steenrod Algebra 533
§23.7. Wrap-Up 538

Chapter 24. Chain Complexes 541
§24.1. The Cellular Complex 542
§24.2. Applying Algebraic Universal Coefficients Theorems 547
§24.3. The General Künneth Theorem 548
§24.4. Algebra Structures on $C^*(X)$ and $C_*(X)$ 550
§24.5. The Singular Chain Complex 551

Chapter 25. Topics, Problems and Projects 553
§25.1. Algebra Structures on \mathbb{R}^n and \mathbb{C}^n 553
§25.2. Relative Cup Products 554
§25.3. Hopf Invariants and Hopf Maps 556
§25.4. Some Homotopy Groups of Spheres 563
§25.5. The Borsuk-Ulam Theorem 565
§25.6. Moore Spaces and Homology Decompositions 567
§25.7. Finite Generation of $\pi_*(X)$ and $H_*(X)$ 570
§25.8. Surfaces 572
§25.9. Euler Characteristic 573
§25.10. The Künneth Theorem via Symmetric Products 576
§25.11. The Homology Algebra of $\Omega\Sigma X$ 576
§25.12. The Adjoint λ_X of $id_{\Omega X}$ 577
§25.13. Some Algebraic Topology of Fibrations 579
§25.15. A Variety of Topics 581
§25.16. Additional Problems and Projects 585

Part 6. Cohomology, Homology and Fibrations

Chapter 26. The Wang Sequence 591
§26.1. Trivialization of Fibrations 591
§26.2. Orientable Fibrations 592
§26.3. The Wang Cofiber Sequence 593
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§26.4</td>
<td>Some Algebraic Topology of Unitary Groups</td>
<td>597</td>
</tr>
<tr>
<td>§26.5</td>
<td>The Serre Filtration</td>
<td>600</td>
</tr>
<tr>
<td>§26.6</td>
<td>Additional Topics, Problems and Projects</td>
<td>603</td>
</tr>
<tr>
<td>Chapter 27</td>
<td>Cohomology of Filtered Spaces</td>
<td>605</td>
</tr>
<tr>
<td>§27.1</td>
<td>Filtered Spaces and Filtered Groups</td>
<td>606</td>
</tr>
<tr>
<td>§27.2</td>
<td>Cohomology and Cone Filtrations</td>
<td>612</td>
</tr>
<tr>
<td>§27.3</td>
<td>Approximations for General Filtered Spaces</td>
<td>615</td>
</tr>
<tr>
<td>§27.4</td>
<td>Products in $E_1^{,}(X)$</td>
<td>618</td>
</tr>
<tr>
<td>§27.5</td>
<td>Pointed and Unpointed Filtered Spaces</td>
<td>620</td>
</tr>
<tr>
<td>§27.6</td>
<td>The Homology of Filtered Spaces</td>
<td>620</td>
</tr>
<tr>
<td>§27.7</td>
<td>Additional Projects</td>
<td>621</td>
</tr>
<tr>
<td>Chapter 28</td>
<td>The Serre Filtration of a Fibration</td>
<td>623</td>
</tr>
<tr>
<td>§28.1</td>
<td>Identification of E_2 for the Serre Filtration</td>
<td>623</td>
</tr>
<tr>
<td>§28.2</td>
<td>Proof of Theorem 28.1</td>
<td>625</td>
</tr>
<tr>
<td>§28.3</td>
<td>External and Internal Products</td>
<td>631</td>
</tr>
<tr>
<td>§28.4</td>
<td>Homology and the Serre Filtration</td>
<td>633</td>
</tr>
<tr>
<td>§28.5</td>
<td>Additional Problems</td>
<td>633</td>
</tr>
<tr>
<td>Chapter 29</td>
<td>Application: Incompressibility</td>
<td>635</td>
</tr>
<tr>
<td>§29.1</td>
<td>Homology of Eilenberg-MacLane Spaces</td>
<td>636</td>
</tr>
<tr>
<td>§29.2</td>
<td>Reduction to Theorem 29.1</td>
<td>636</td>
</tr>
<tr>
<td>§29.3</td>
<td>Proof of Theorem 29.2</td>
<td>638</td>
</tr>
<tr>
<td>§29.4</td>
<td>Consequences of Theorem 29.1</td>
<td>641</td>
</tr>
<tr>
<td>§29.5</td>
<td>Additional Problems and Projects</td>
<td>642</td>
</tr>
<tr>
<td>Chapter 30</td>
<td>The Spectral Sequence of a Filtered Space</td>
<td>645</td>
</tr>
<tr>
<td>§30.1</td>
<td>Approximating $Gr^s \tilde{H}^n(X)$ by $E_r^{*,n}(X)$</td>
<td>646</td>
</tr>
<tr>
<td>§30.2</td>
<td>Some Algebra of Spectral Sequences</td>
<td>651</td>
</tr>
<tr>
<td>§30.3</td>
<td>The Spectral Sequences of Filtered Spaces</td>
<td>654</td>
</tr>
<tr>
<td>Chapter 31</td>
<td>The Leray-Serre Spectral Sequence</td>
<td>659</td>
</tr>
<tr>
<td>§31.1</td>
<td>The Leray-Serre Spectral Sequence</td>
<td>659</td>
</tr>
<tr>
<td>§31.2</td>
<td>Edge Phenomena</td>
<td>663</td>
</tr>
<tr>
<td>§31.3</td>
<td>Simple Computations</td>
<td>671</td>
</tr>
<tr>
<td>§31.4</td>
<td>Simplifying the Leray-Serre Spectral Sequence</td>
<td>673</td>
</tr>
<tr>
<td>§31.5</td>
<td>Additional Problems and Projects</td>
<td>679</td>
</tr>
</tbody>
</table>
Chapter 32. Application: Bott Periodicity

§32.1. The Cohomology Algebra of $BU(n)$

§32.2. The Torus and the Symmetric Group

§32.3. The Homology Algebra of BU

§32.4. The Homology Algebra of $\Omega SU(n)$

§32.5. Generating Complexes for ΩSU and BU

§32.6. The Bott Periodicity Theorem

§32.7. K-Theory

§32.8. Additional Problems and Projects

Chapter 33. Using the Leray-Serre Spectral Sequence

§33.1. The Zeeman Comparison Theorem

§33.2. A Rational Borel-Type Theorem

§33.3. Mod 2 Cohomology of $K(G,n)$

§33.4. Mod p Cohomology of $K(G,n)$

§33.5. Steenrod Operations Generate A_p

§33.6. Homotopy Groups of Spheres

§33.7. Spaces Not Satisfying the Ganea Condition

§33.8. Spectral Sequences and Serre Classes

§33.9. Additional Problems and Projects

Part 7. Vistas

Chapter 34. Localization and Completion

§34.1. Localization and Idempotent Functors

§34.2. Proof of Theorem 34.5

§34.3. Homotopy Theory of \mathcal{P}-Local Spaces

§34.4. Localization with Respect to Homology

§34.5. Rational Homotopy Theory

§34.6. Further Topics

Chapter 35. Exponents for Homotopy Groups

§35.1. Construction of α

§35.2. Spectral Sequence Computations

§35.3. The Map γ

§35.4. Proof of Theorem 35.3

§35.5. Nearly Trivial Maps
Chapter 36. Classes of Spaces 759
 §36.1. A Galois Correspondence in Homotopy Theory 760
 §36.2. Strong Resolving Classes 761
 §36.3. Closed Classes and Fibrations 764
 §36.4. The Calculus of Closed Classes 767

Chapter 37. Miller’s Theorem 773
 §37.1. Reduction to Odd Spheres 774
 §37.2. Modules over the Steenrod Algebra 777
 §37.3. Massey-Peterson Towers 780
 §37.4. Extensions and Consequences of Miller’s Theorem 785

Appendix A. Some Algebra 789
 §A.1. Modules, Algebras and Tensor Products 789
 §A.2. Exact Sequences 794
 §A.3. Graded Algebra 795
 §A.4. Chain Complexes and Algebraic Homology 798
 §A.5. Some Homological Algebra 799
 §A.6. Hopf Algebras 803
 §A.7. Symmetric Polynomials 806
 §A.8. Sums, Products and Maps of Finite Type 807
 §A.9. Ordinal Numbers 808

Bibliography 811

Index of Notation 821

Index 823