Contents

Preface ix

Chapter 1. Polynomial rings and ideals 1
 §1.1. Polynomial rings 1
 1.1.1. Definition of the polynomial ring 1
 1.1.2. Some basic properties of polynomial rings 5
 §1.2. Ideals 6
 1.2.1. Operations on ideals 6
 1.2.2. Residue class rings 7
 1.2.3. Monomial ideals and Dickson’s lemma 8
 1.2.4. Operations on monomial ideals 10
Problems 12

Chapter 2. Gröbner bases 15
 §2.1. Monomial orders 15
 2.1.1. Examples and basic properties of monomial orders 15
 2.1.2. Construction of monomial orders 17
 §2.2. Initial ideals and Gröbner bases 18
 2.2.1. The basic definitions 18
 2.2.2. Macaulay’s theorem 20
 2.2.3. Hilbert’s basis theorem 21
 §2.3. The division algorithm 22
 §2.4. Buchberger’s criterion 25
 §2.5. Buchberger’s algorithm 28
 §2.6. Reduced Gröbner bases 29
Problems 30
Chapter 3. First applications 33

§3.1. Elimination of variables 33
 3.1.1. Elimination orders 33
 3.1.2. The Elimination Theorem 34

§3.2. Applications to operations on ideals 34
 3.2.1. Intersection of ideals 34
 3.2.2. Ideal quotient 35
 3.2.3. Saturation and radical membership 36
 3.2.4. K-algebra homomorphisms 37
 3.2.5. Homogenization 40

§3.3. Zero dimensional ideals 42

§3.4. Ideals of initial forms 46

Problems 48

Chapter 4. Gröbner bases for modules 51

§4.1. Modules 51

§4.2. Monomial orders and initial modules 53

§4.3. The division algorithm and Buchberger’s criterion and algorithm for modules 56

§4.4. Syzygies 58
 4.4.1. How to compute syzygy modules 58
 4.4.2. Systems of linear equations over the polynomial ring 63
 4.4.3. Schreyer’s theorem 66
 4.4.4. Graded rings and modules 68
 4.4.5. Graded free resolutions 70
 4.4.6. Numerical data arising from graded resolutions 73
 4.4.7. Z^{n}-graded modules 76

Problems 80

Chapter 5. Gröbner bases of toric ideals 83

§5.1. Semigroup rings and toric ideals 83

§5.2. Gröbner bases of toric ideals 87

§5.3. Simplicial complexes and squarefree monomial ideals 88

§5.4. Normal semigroup rings 91

§5.5. Edge rings associated with bipartite graphs 94

Problems 97

Chapter 6. Selected applications in commutative algebra and combinatorics 99

§6.1. Koszul algebras 99
§6.2. Sortable sets of monomials 105
§6.3. Generalized Hibi rings 110
§6.4. Gröbner bases for Rees rings 113
 6.4.1. The ℓ-exchange property 113
 6.4.2. The Rees ring of generalized Hibi ideals 115
§6.5. Determinantal ideals 117
 6.5.1. Determinantal ideals and their initial ideals 117
 6.5.2. The initial complex of a determinantal ideal 121
§6.6. Sagbi bases and the coordinate ring of Grassmannians 127
 6.6.1. Sagbi bases 127
 6.6.2. The coordinate ring of Grassmannians 130
§6.7. Binomial edge ideals 135
§6.8. Connectedness of contingency tables 140
 6.8.1. Contingency tables and the χ^2-statistics 140
 6.8.2. Random walks 141
 6.8.3. Contingency tables of shape $2 \times n$ 144

Problems 152

Bibliography 157

Index 161